How can computation... sort data faster for you?

Previous Lecture

Two intuitive, but slow sorting algorithms

Selection sort:
- Repeat for each key in list
 - Find minimum key in unsorted portion
 - Move to next position of sorted portion

Insertion sort:
- Repeat for each key in unsorted list
 - Insert into its correct position in sorted portion

Both algorithms $O(N^2)$ where N is length of list

Sorting Algorithms: Speed Comparison

Recursive Algorithms

Algorithm is recursive if can be defined by:
- Simple base case
- Set of rules reducing other cases toward base case

Recursion: If you still don't get it, see: "Recursion".
Recursive Definition of Factorial
Example: Fact(5) = 5! = 5 * 4 * 3 * 2 * 1
Recursive definition:
• Fact(1) = 1 [base case]
• For all integers \(n > 1 \): Fact(n) = n * Fact(n-1)
Fact(5) = ??
= 5 * Fact (4)
= 5 * 4 * Fact(3)
= 5 * 4 * 3 * Fact(2)
= 5 * 4 * 3 * 2 * Fact (1)
= 5 * 4 * 3 * 2 * 1 \[\text{Recursion ends!}\]

Merge Sort Algorithm: Uses Recursion
Base case:
• If list of length 0 or 1, done (sorted)
Otherwise:
• Divide unsorted list of size \(M \) into two sublists of size \(M/2 \)
• Sort each sublist recursively using mergesort
• Merge two sublists back into one sorted list
How to merge two lists into one?

Merging Two Sorted Runs
2 4
5 8
6 9
10 13

End

Algorithm: Compare 1st element of each list, remove the smaller as next element of sorted run
Very efficient! Very few comparisons needed for merge
How many comparisons needed to create list of size \(N \)? \(O(N) \) comparisons

Merge Sort: Recursively Divide Down Tree
Sort keys: 1 6 50 46 32 14 8 3 92 15 45 56 59 77 49 88

1 6 50 46 32 14 8 3 92 15 45 56 59 77 49 88
1 6 50 46 32 14 8 3
1 6 50 46
1 6

92 15 45 56 59 77 49 88
92 15 45 56
92 15
92

59 77 49 88
59 77
59

49 88
49
49

O(N) comparisons
Merge Sort: Merge Two Lists Up Tree

Sort keys: 1 6 50 46 32 14 8 3 92 15 45 56 59 77 49 88

1, 3, 6, 14, 15, 32, 45, 46, 49, 50, 56, 59, 88, 92

1, 3, 6, 8, 14, 32, 46, 50

1, 6, 46, 50

1, 6

1

6

46, 50

50

46

3, 8, 14, 32

14, 32

32

14

3, 8

2, 5, 8, 10, 11, 13, 14, 14, 15, 16, 19, 35, 46, 66, 72, 89

2, 8, 10, 14, 19, 35, 46, 66, 72

2, 8, 19, 72

10, 14, 35, 66

14, 15, 11, 46

5, 89, 16, 13

How high (or deep) is the tree?
- \(\log_2 N \)

How many comparisons to create next level? (last run? 2nd-to-last two runs?)
- last run: N
- 2nd-to-last two runs: \(2 \times \frac{N}{2} \)

Total comparisons?
- \(N \log_2 N \)

Which runs can be merged independently of others?
- All runs at same level are independent!
- Must create runs lower in the tree first!

Why is this a good property?
- Can merge runs in parallel!
- Great for multiprocessors, multi-cores, clusters of machines
Quicksort (Qsort) Algorithm: Recursive

Base case: list of size one is sorted by definition

Otherwise:
Pick an element (pivot) from list
Reorder:
- All keys < pivot → move key before pivot
- All keys > pivot → move key after pivot
 - Equal values can go either way
- Pivot is now in its final sorted position
Recursively sort (w/ quick sort) two sub-lists

Quicksort Demo

Quicksort Example
Quicksort:
How many comparisons?

<table>
<thead>
<tr>
<th>2, 8, 19, 72, 35, 14, 10, 66, 14, 15, 11, 46, 5, 89, 16, 13</th>
</tr>
</thead>
<tbody>
<tr>
<td>2, 8, 10, 11, 5</td>
</tr>
<tr>
<td>19, 72, 35, 14, 16, 66, 14, 15, 46, 5, 89, 16</td>
</tr>
<tr>
<td>8, 10, 11</td>
</tr>
<tr>
<td>14, 14, 15</td>
</tr>
<tr>
<td>19, 35, 72, 66, 46</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>19, 35, 46, 72, 66</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>66, 72</td>
</tr>
</tbody>
</table>

What is height of tree?
If pivot divides keys into two equal groups
\(\log_2 N \)
How many comparisons to form new level of tree
\(N \)
Total comparisons
\(N \log N \)

Why does Complexity matter?

sorting algorithm comparison:

<table>
<thead>
<tr>
<th></th>
<th>Selection Sort</th>
<th>Insertion Sort</th>
<th>Merge Sort</th>
<th>Quick Sort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Worst case?</td>
<td>(O(N^2))</td>
<td>(O(N^2))</td>
<td>(O(N \log N))</td>
<td>(O(N^2)) If pick bad pivot</td>
</tr>
<tr>
<td>Best case?</td>
<td>(O(N^2))</td>
<td>(O(N))</td>
<td>(O(N \log N))</td>
<td>(O(N \log N))</td>
</tr>
<tr>
<td>Average case?</td>
<td>(O(N^2))</td>
<td>(O(N^2))</td>
<td>(O(N \log N))</td>
<td>(O(N \log N))</td>
</tr>
</tbody>
</table>
Why does Complexity matter?

How long to sort 60,000,000 keys?
Assume 3 billion (3 * 10^9) comparisons per second
With N^2 N algorithm: Approx 3 * 10^15 comparisons
Requires 10^10 seconds = 280 hours! More than 10 days!
With N Log N algorithm: Approx 1.5 * 10^9 comparisons
Requires 0.5 seconds!

N Log N grows very slowly with N… Practical for large N

NOW-Sort: World Record Holder
Sorted 1 million keys (1997)
- Disk-to-disk
- < 2.5 seconds
- 100 machines on network

Merge sort works well here
- Each machine starts with 1/100 of keys (and data!) on local disk
- Sorts its own keys
- Each sends sorted run of keys (and data!) to destination machine
- After receive all keys, each machine:
 - Merge 100 sorted runs

Check-Up
A. How many times will blocks in largest innermost loop execute?
 - That is, what is the value of counter when script terminates?

C. What is the order of magnitude for the number of operations in each as a function of N?
 - Remember: When calculating order of magnitude, disregard constant factors.
 - Hint: If runs in time independent of N, then O(1)

Announcements
Sorting algorithms
- O(N^2) sorting algorithms
 - Selection sort: Find minimum and make next
 - Insertion sort: Take next and insert in correct place
- O(N log N) sorting algorithms (expected, not worst-case)
 - Merge sort: Recursively combine sub-lists into larger lists
 - Quicksort: Recursively partition list into sub-lists around pivot

Announcements
- Homework 5: Congrats to Fong Lor, Jake Hilborn, and Kameko Blair
- Homework 6: No Extra Credit
 - email me if you think your project showed creativity, may re-evaluate
- Homework 7: Due Friday – No Programming
 - Explore Google Trends, Understand basic sorting algorithms, Reflect on Technology and Education (make sure you can watch Friday video)