How can computation... sort data in order for you?

What is sorting?

Put keys (and associated data) in specified order
- Ascending or descending
- Numerical or alphabetical

Sort keys and keep data with it
- Key: High score; Data: name
- Key: Exam 1 grade; Data: everything else...

Why is sorting important?

General:
- Can find what you want faster given sorted data

Sorted data is easier to search through
- Can apply binary search instead of linear search

Trivial to find minimum and maximum elements
- First and last in list (or top W elements!)

Easy to find duplicate values
- Adjacent to each other in list

Easy to find patterns, anomalies, gap
- Networking: TCP can find missing packets
How would you sort?

709 285 793 348 199 240 531 148 269 989 249 519 291 113 69 857 985 227 17 913 943 433 180 516

N = 25 keys (or elements)

Think about what algorithm you would use

Basic operations
- Compare two numbers to each other (> or <)
- Move keys around in list (insert, delete, replace)

Many Different Sorting Algorithms

Today: Slow algorithms, but easy to understand
- Selection sort
- Insertion sort

Next Lecture: Faster algorithms
- Mergesort
- Quicksort

Review:
How to find Min in List?

Loop through List using index variable

Input:
- List : Unsorted List

Output:
- Min
- Min index

Local variable:
- index

Robust to length of List

How can you sort using Minimum?

How can you sort list of numbers if you can find the minimum?
- Move numbers into “sorted list”
Algorithm 1: Selection Sort
To sort data...
Repeat until nothing in unsorted list:
 • Find minimum element
 • Add element to sorted list
 • Delete from unsorted list

How to Implement Selection Sort in Scratch?

Control code	Asks Sorter Sprite to do work
Create a list | Make List
Get the list sorted | Check List
Check that the list really is sorted

Sorter Sprite: Helper Functions
Selection Sort: Two Lists
Finds minimum remaining element in unsorted
Adds to Sorted (in order)
Deletes minimum from unsorted

Selection Sort: One List Demo
Swaps minimum with key at desired location

Top W words for HW 6?
Very similar task: Find maximum in TalliesList W times
• Add those W items to MostPopularTallies and MostPopular
• Delete W items from TalliesList and UniqueList

Selection Sort: One List Demo
Swaps minimum with key at desired location
Selection Sort in Scratch: One List

Variable i:
Number of sorted elements

Variable j:
Looks for min of remaining unsorted elements (start at variable "i" in each iteration)

Algorithm 2: Insertion Sort

What algorithm do you use to sort cards?

Insertion Sort

Divide cards into two groups: sorted and unsorted

Initial state: 1 sorted card, N-1 unsorted

Repeat for all cards
- Remove 1st card from unsorted portion
- Insert into correct location in sorted list
 - Repeat loop
 - Keep moving down list until card to left < new card
- Update definition of sorted vs. unsorted portions

Repeat for all cards
Take 1st unsorted card
Insert into correct location in sorted part of list
Which Sorting Algorithm is Best?

Compare number of loop iterations as function of N – size of input list.

Previously analyzed searching algorithms:
- Linear search: $O(N)$ operations
- Binary search: $O(\log_2 N)$ operations

Insertion Sort: Iterations?

Outer loop?
- Always N-1 or $O(N)$
- Inner loop – Worst case? Data in reverse order! Must move key to beginning
 1, 2, ..., N-3, N-2, N-1 \rightarrow N/2
- Best case? Data sorted already! Done immediately!
 0
- Average case? Move to middle of list... $\frac{N}{2}$ Worst case $= N/4$ still $O(N)$

Selection Sort: How many loop iterations?

Selection Sort: Two Lists
- Size of list: N
- 2 loops: Outer and inner
- How many iterations of outer loop?
 - N
- How many iterations of inner loop?
 - $N, N-1, N-2, ... 1$
 - Average: $N/2$
- Total?
 - $N \times N/2$
- Complexity?
 - $O(N^2)$

Check-Up

T/F: Selection Sort is a $O(N)$ algorithm

T/F: To selection sort in DESCENDING (instead of ASCENDING) order:
- select MAXIMUM (instead of MINIMUM) element

What is the 2nd version of insertion sort doing?
Today’s Summary

Intuitive but Slow Sorting
- Selection sort: Select minimum and make next in list
- Insertion sort: Take next and insert in correct place
- Both require operations $O(N^2)$
- Tip: Always write check code (easier than work code)

Announcements
- Voting for HW 5 Music by Noon today
- HW 6: Due Friday at 5pm
- Friday: No lecture; Watch video on schedule page
 - Digital StudyHall: Experience of Technology Development for Improving Rural Education in India.
 - 48 minute talk from 2009 at Harvey Mudd
 - Few related questions in HW 7

Alternate Implementation of Insertion Sort in Scratch

Repeat for all cards
Take 1st unsorted card
Insert into correct location in sorted list; Repeat loop
Keep moving down list until card to left is smaller than new card
OR at beginning of list