Lecture 32:
Why must a computer... detect liars and cheaters?

Island of Liars and Truth Tellers

Assumptions of logic puzzle:
• You are on an island populated by two tribes
• Members of one tribe always tell the truth
• Members of one tribe always lie
• Tribe members can recognize one another, but you can’t tell them apart
Puzzles

1. You meet a man on the island. You ask “Are you a truth teller?” He answers “Yes”. Is he a truth teller or liar?
 • Can’t tell!

<table>
<thead>
<tr>
<th>Truth Teller or Liar?</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>TT</td>
<td>Yes</td>
</tr>
<tr>
<td>Liar</td>
<td>Yes</td>
</tr>
</tbody>
</table>

2. You meet a man and ask if he is a truth-teller. A blaring siren prevents you from hearing his answer. You inquire, “Sorry, did you say you’re a truth teller?” He responds, “No, I did not.” To which tribe does he belong?
 • Liar

<table>
<thead>
<tr>
<th>Truth Teller or Liar?</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>TT</td>
<td>Yes, I did.</td>
</tr>
<tr>
<td>Liar</td>
<td>No, I did not</td>
</tr>
</tbody>
</table>

More Puzzles

3. You meet two people A and B. A says “Both of us are from the liars tribe.” Which is A? What is B?

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Possible?</th>
</tr>
</thead>
<tbody>
<tr>
<td>TT</td>
<td>TT</td>
<td></td>
</tr>
<tr>
<td>TT</td>
<td>Liar</td>
<td></td>
</tr>
<tr>
<td>Liar</td>
<td>TT</td>
<td></td>
</tr>
<tr>
<td>Liar</td>
<td>Liar</td>
<td></td>
</tr>
</tbody>
</table>

4. You meet two people C and D. C says “Exactly one of us is from the liars tribe.” What is D? What is C?

<table>
<thead>
<tr>
<th>C</th>
<th>D</th>
<th>Possible?</th>
</tr>
</thead>
<tbody>
<tr>
<td>TT</td>
<td>TT</td>
<td></td>
</tr>
<tr>
<td>TT</td>
<td>Liar</td>
<td></td>
</tr>
<tr>
<td>Liar</td>
<td>TT</td>
<td></td>
</tr>
<tr>
<td>Liar</td>
<td>Liar</td>
<td></td>
</tr>
</tbody>
</table>

D: Liar
C: Can’t tell!
How do Liars Relate to Computers?

Distributed Systems

• “Collection of independent computers that appears to its users as a single coherent system”
• All interesting web services built this way!

Why are Web Services Built as Distributed Systems?

Great price/performance
• Use many commodity components (nodes and networks)

Incremental scalability
• Add x% new nodes to improve performance x%

Improved availability (Up 24x7)
• Continue operating when some nodes stop working

Improved reliability
• Deliver correct results when some nodes misbehave!
Why do Nodes Misbehave?

Hardware problems
• Bit flips in memory
• Disk returns data from wrong sector
• Over-clocked processor
• Power fluctuation

Software bugs
• Honest mistakes in millions of lines of code
• Don’t understand code written by someone else
• Misconfigured
• Concurrent events

Malicious software

Example Distributed Service

Connect to service using HTTP protocol
Customer can purchase and download favorite music

Customer does not know how service is implemented
• Could be one machine or 1000s
• Customer doesn’t care as long as get right music
How Should Distributed Service be Implemented?

Complexity and cost depend upon Failure Model

- Assumptions about how components can fail

Simplest (most naïve, optimistic) failure model?
- Assume nodes never fail!
- All components always give correct answer
- Corresponds to Truth teller

What if Computers Fail?

Failure model: Fail-Stop
- Very common assumption
- Computer either works correctly or it stops (e.g., crashes)
 - Tells truth until it dies; others can recognize you are dead

How would you design with fail-stop computers?
- How do you know how many computers to use?
- Declare system can handle some number (f) of failures; Assume f=2
- How many total computers needed?

Use f+1 = 3 computers
What if Computers Lie?

Failure model: Consistent Liars
- Faulty computers always gives the wrong response (stuck at zero)
- Computers are either truth-tellers or liars

How would you design dist. system with lying computers?
- Assume system must be able to handle 1 failure (1 lying computers)
- How many computers are needed?

To handle f liars, must have f+1 truth tellers
Must have total of 2f+1 computers
Liars, Randoms, and Truth Tellers

Assumptions of puzzle:
• You are on an island populated by three tribes
• Members of one tribe always tell the truth
• Members of one tribe always lie
• Members of one tribe either tell truth or lie, completely at random!
• Tribe members can recognize one another, but you can’t tell them apart

Puzzle with Random Info

You meet three people (A, B, C) from the island, one from each tribe

How can tell who is from each tribe by asking only three yes/no questions?

Each question must be directed at only one person
You can ask the same person multiple questions
Can ask different questions (or to different people) depending upon previous answers
Puzzle with Random Info

Hint: Which tribe gives the worst answers?
- Random \(\rightarrow\) Gives no useful information
- Try to avoid them as much as possible

Hint: What possible orders for ABC are there?
Enumerate...
- RLT, RTL, TRL, TLR, LTR, LRT \(\rightarrow\) 6 possibilities

Why might we be able to identify given 3 yes/no questions?
- Could identify \(2^3 = 8\) possibilities (given no randoms)

Puzzle with Random Info

Possibilities: RLT, RTL, TRL, TLR, LTR, LRT
Strategy: Ask question to divide possibilities into two groups (of 4 each)
Ask first person: Is R immediately after L in list?
- Don’t know what type first person is!
 - Will get random info if R is first
 - Truth if T first
 - Lies if L first
Determine answer for all 6 possibilities
- Red \(\rightarrow\) Person answers no
- Green \(\rightarrow\) Person answers yes
- RLT, RLT, RTL, RTL, TRL, TLR, LTR, LRT,
Puzzle with Random Info: Solution

Yes: RLT, RTL, TLR, LTR
No: RLT, RTL, TRL, LRT

Imagine Answer is “Yes”; What is good about all yes answers?
• R never 2nd
So, if get “yes”, ask question of 2nd person to tell if T or L?
• 2nd: Are you a Random?
If answer “yes”, what is 2nd person?
• Liar; Possible orders?
• RLT, TLR
• Else if answer “no”, 2nd person is Truth Teller; Possible orders?
• RTL, LTR
What is useful for 3rd question?
• 3rd: Ask 2nd person about 3rd person to identify case

Puzzle with Random Info: Solution

Yes: RLT, RTL, TLR, LTR
No: RLT, RTL, TRL, LRT

Imagine Answer is “No”; What is same about all No answers?
• R never 3rd
So, if get “No”, ask 3rd instead of 2nd
• 3rd: Are you a Random?
If answer “yes”, what is 3rd person?
• Liar; Possible orders?
• RTL, TRL
• Else if answer “no”, 3rd person is Truth Teller; Possible orders?
• RLT, LTR
What is useful for 3rd question?
• 3rd: Ask 3rd person about 2nd person to uniquely identify case
Conclusion: Random Info

Random information (sometimes lying and sometimes telling truth) really complicates logic

Very hard to reason about and make conclusions

Assume Computers Can Sometimes Lie

Failure model: Sometimes Liars
- Faulty computers give unpredictable random response
- Byzantine: Give response calculated to worst possible harm (malicious)
- Most traditional distributed systems don’t assume Byzantine, but peer-to-peer could

How would you design dist. system with malicious computers?
- Assume system must be able to handle 2 failures (2 lying computers)

For this example, sometimes lying is no worse than always lying
Assume Computers Can Sometimes Lie

Failure model:
• Assume healthy components can be tricked!
• Assume system must be able to handle 2 failures (2 lying computers)
• Healthy, but tricked nodes, might return wrong results!

Solution?

Where did problem start?
• Healthy (truth-telling) computers have wrong song!
Solution: Make healthy computers agree on state

How to make nodes agree?
• Tell others what believe and each take majority!
• Example: All agree on music
• If all nodes are healthy, can easily agree on correct music
Agreement is not so Simple!

Malicious nodes can try to trick others about the state!

What would we like to have happen?
- A, B, C, E to agree don’t know correct value of Music
 - Acquire music again
- But D can confuse healthy nodes!

What should node D tell others?
- A, B: Music
- C, E: Bad music
- A and B think all agree on Good Music
- C and E think all agree on Bad Music

Agreement Requires Lots of Work

How can we fix?
- Tell other nodes what D (and everyone else) said to you
- A tells B, C, and E that “D told me Music”
- C tells A, B, and E that “D told it Bad Music”

What should D do?
- Make it look like other nodes are liars!
- D tells A that “C told me Music”
- D tells C that “A told me Bad Music”

How can A tell if C or D is lying??
- Check heresay from other nodes
 - A sees that B said “D told me Music” and E says “D told me Bad Music”
 - Works as long as have f bad nodes, 2f+1 good nodes
- Healthy nodes will figure out disagreement and
Mafia or Werewolf Party Game

Byzantine agreement is similar to Werewolf
- Minority of people secretly assigned as werewolves (malicious, lying, all knowing)
- Others are villagers (truth-tellers)

Night: Werewolves kill villager
Day: Everyone agrees on whom to kill
- Villagers trying to agree on who is werewolf
- Werewolves try to trick villagers into thinking some villager is werewolf

Game over when one side is eliminated

Today’s Summary

Distributed Systems
- Used to implement most all web services
 - Improve performance, availability, reliability
- Complexity and cost depend upon f and fault model
 - Fail-stop: Need $f+1$ nodes
 - Liars: Need to vote with $2f+1$ nodes
 - Malicious liars (random): To agree on inputs need $3f+1$ nodes

Announcements
- Exam 2 returned Monday; Solutions available; Ave 78
 - Approximate curve: A: 90+, AB: 80+, B: 70+, BC: 60+
- P2 graded; Feedback – Pratima: website; David: paper
- HW 9 Due Monday (pencil and paper algorithms)
- Project 3: Due Wed May 5th (Game of chance)
- Frontiers of CS:
 - 2nd Guest Lecture Friday – Vision
 - 3rd Guest Lecture Monday – Robotics