Announcements

Homework 10 (LAST!!) due Wednesday by 5 pm

- Watch TED talk; write essay answering questions

Final Project : Card Game

- Due December 12 - In-class Demos

Intermediate Deadlines

- Wed $(11 / 30)$: Find project partner
- Google Doc to find others (email to cs202-tas@cs.wisc.edu)
- Fri (12/2): Project proposal
- 1 sentence email to cs202-tas@cs.wisc.edu (cc partner)
- Wed (12/7): Project draft to Learn@UW dropbox
- Whatever you have completed

Instructor Office Hours: None today
Tuesday and Thursday -- 1:30-4:30

Shorthand in Logic Gates

Can draw AND and OR gates with more than two inputs

AND gate: Output is 1 if and only if all inputs are 1
OR gate: Output is 1 if one or more inputs are 1

Review: Sum of Products

Can implement ANY truth table with AND, OR, NOT

Approach \#1: Sum of Products

Inputs: Two binary numbers A and B
View each bit of number as an input; 2 bits each

- $A=a_{1} a_{0}$
- $B=b_{1} b_{0}$

What range of numbers can be added together?
A can be 00, 01, 10, $11(0,1,2,3)$
B can be 00, 01, $10,11(0,1,2,3)$
Output is a three-bit binary number

- $\mathrm{Sum}=\mathrm{s}_{2} \mathrm{~s}_{1} \mathrm{~s}_{0}$

Are 3 bits enough to represent Sum?

- Largest Sum $=11+11=3+3=6=100$

Today's Challenge

Can we perform addition using only AND, OR, and NOT gates?

Sum
Can compute logic circuit for any function "Sum = A plus B" is a function of only inputs Therefore, can create circuit for addition!

Approach \#1: Sum of Products

View each bit of number as an input; 2 bits each

- $A=a_{1} a_{0} ; B=b_{1} b_{0}$

Output is a three-bit binary number

- Sum $=s_{2} s_{1} s_{0}$

Construct truth table of all input combinations

- How many rows?
- 4 bits of input
- $2^{4}=16$ rows of table

Use sum-of-products algorithm for three outputs

- s2, s1, and s0

Approach \#2: Modular Design

Modular Design

- Library of small number of basic components
- Combine together to achieve desired functionality
- Basic principle of modern industrial design

Requires some insight to design component

Approach \#1: Sum of Products

What if 32-bit integers instead of 2-bits??
Number of inputs to circuit?

$$
\text { - } 2^{*} 32=64
$$

How many rows in truth table?

$$
\cdot 2^{64}
$$

Implication:
Need a fundamentally different approach for any real architecture!

Algorithm for binary addition?

	10011	
19	10011	$16+2+1=19$
+27	11011	$16+8+2+1=27$
46	101110	$32+8+4+2=46$

We know these facts:

$0+0+0=00$
$1+0+0=01$
$1+1+0=10$ (two)
$1+1+1=11$ (three)

Module: 1-bit Full Adder

Implement using just AND, OR, NOT

- Add two bits (A, B) and carry-in ($C_{\text {in }}$),
for one-bit sum (S) and carry-out ($C_{\text {out }}$)
Truth Table

A	B	$C_{\text {in }}$	$C_{\text {out }} S$	
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Modular Design for Addition

Notation:

$$
\begin{array}{llllll}
& \begin{array}{lllll}
c_{N-1} & c_{N-2} & \cdots & c_{1} & c_{0} \\
a_{N-1} & a_{N-2} & \cdots & a_{1} & a_{0} \\
+\quad & b_{N-1} & b_{N-2} & \cdots & b_{1}
\end{array} b_{0} \\
\hline
\end{array}
$$

Repeatedly (N times) do 1-bit full add: Take cin, a, b as input Compute cout, s as output

Abstraction: 1-bit Full Adder

Represent this circuit:

With this diagram:

Carry bit

 for

How many gate delays until output settles?
Each 1-bit adder requires 2 gate delays (AND + OR gates) 4 adders * 2 gate delays/adder $=8$ gate delays
Influences clock speed of processor

Create Addition Circuit in Scratch!

Add two 4-bit numbers to produce 1 5-bit number

- Only use AND, OR, and NOT!
- 4 nearly identical Sprites

Scripts for 1 Full-bit Adder

Scripts identical across 4 Adder Sprites
Each has private variable for $a, b, c i n$, cout, s

```
Om0
N-w
-5N-0.0
```


\sec

To connect adders, simply set cin to cout of "previous" Sprite

Today's Topics

Summary

- We can do addition with just AND, OR, and NOT! Homework 10 (LAST!!) due Wednesday by 5 pm
- Watch TED talk; write essay answering questions Final Project : Card Game
- Due December 12 - In-class Demos

Intermediate Deadlines

- Wed ($11 / 30$): Find project partner
- Google Doc to find others (email to cs202-tas@cs.wisc.edu)
- Fri (12/2): Project proposal
- 1 sentence email to cs202-tas@cs.wisc.edu (cc partner)
- Wed (12/7): Project draft to Learn@UW dropbox
- Whatever you have completed

Instructor Office Hours: None today
Tuesday and Thursday -- 1:30-4:30

