Announcements

- Vote for Homework 8 (Trivia Games) by NOON today
- Homeworks 9 and 10 NOW Available
- HW 9 Due before Thanksgiving
- HW 10 Due after Thanksgiving
- No programming for HW 9 or 10
- Final Project will be to use Scratch to prototype some design
- Exam 2 graded and returned by Monday
- No lecture Wednesday before Thanksgiving

Theme 3: How do computers...

... Represent data and information?
... Represent numbers, words, pictures, and movies?
... Act so logically?
... Manipulate and remember data?
... Execute instructions?
... Access data quickly?
... Run multiple programs simultaneously?
... Store data permanently?
... Send messages?

Big Idea:

Universal Computing Device
All computers (given enough time and storage) are capable of computing exactly the same things

From Theory to Practice

Theory: Computer can compute anything that's possible to compute (given enough time and storage)

Practice: Solving problems involves computing under constraints

- Time
- weather forecast, next frame of animation, ..
- Cost
- cell phone, automotive engine controller, ...
- Power
- cell phone, handheld video game, ...

Big Idea:

Abstractions Hide Complexity
Abstractions in Software: Stage implements abstraction

Sprite wants Stage to
"Fade Out"

- Doesn't know how Stage does this
broadeat [race onv

Can Compute with Different Technologies

Theme 3: How do computers...

... Represent data and information?
... Represent numbers, words, pictures, and movies?
... Act so logically?
... Manipulate and remember data?
... Execute instructions?
... Access data quickly?
... Run multiple programs simultaneously?
... Store data permanently?
... Send messages?

Magic Trick

Students place cards with 2 values on board in 5×5 grid

Instructor observes

Student switches one card to otner value (Instructor does not look)

Instructor magically identifies switched card!

Representing Data

Recognize this photo?
Was a vote cast or not?

How do computers...
 Represent data?

Lowest level: modern computer = electronic machine

- Works by controlling the flow of electrons

Easy to recognize two conditions:

- presence of voltage - state " 1 "
- absence of voltage - state "0

More difficult to detect and control analog values

Illegal
Analog Values \rightarrow

Modern Computers = Binary Digital Systems

system (not analog)
Cary (base two) system - finite number of symbols

- has two states: 0 and 1

Basic unit of information is binary digit, or
-Can be represented in any technology with two states

Bits in Computers

Transistors and wires: electrons flowing or not? (18)

Capacitors and memory: holding a charge or not?

Optical CD-ROMs and DVDs: Reflecting or not?

010110101101001010
Hard disk drive: Magnetized north or south?
\qquad 0010110

How Can Bits represent Data?

Everything in computer is represented with 1 and 0

- All text you see or type, movies you watch, music you listen to
- Everything stored on disk, $C D$, or flash drive
- Everything you send between computers
- Email, web pages
- Even instructions computer uses to run programs

Unsigned Integers

Approach 1: Non-positional notation

- Represent a number (" 5 ") w/ string of ones ("11111")
- Problems?

What kinds of data must
 bits represent?

Logical: True, False

- Straight-forward: Two states
- True: 1, False: 0

Numbers

- Signed, unsigned, integers, floating point, complex, rational, irrational, ...
Text
- Characters, words, strings, ...

Images

- Pixels, colors, shapes, movies ...

Sound
Instructions

Count in binary from 0 to 7				Handout
Decimal \#	Bit 2	Bit 1	Bit 0	
0				
1				
2				
3				
4				
5				
6				
7				
Alternate way to view binary numbers Convert to decimal:				
			Convert to decimal: 00011	$\begin{aligned} & 2 \\ & 6 \\ & 9 \end{aligned}$
$2^{4}=16^{2^{3}=8} 2^{2}=4^{2^{1}=2}$			01011	19

Converting Binary to Decimal

What would 01001 be in decimal?

Converting Decimal to Binary

How would you make decimal 5 in binary? $4+1 \rightarrow 00101$
$16 \rightarrow 10000$
$16+4+1 \rightarrow 10101$
How many different numbers can you make with 5 cards? $2^{*} 2^{*} 2^{*} 2^{*} 2=2^{5}=32$

What is the largest number you can make with 5 cards? $2^{5}-1=31$

What is the largest number you can make with N cards? $2^{\mathrm{N}}-1$

Decision Tree for 0.. 31

How many questions needed to find answer between 0 and 31 (32 numbers)? If 0 represents "no" or "false" and 1 represents "yes" or "true" what do you notice about the answers?

What is the height of this tree? (i.e. how many questions?) 5 questions for 32 numbers; $\log _{2}(32)=5$
How many bits are needed to represent number between $0 . .31$? 5 bits

Practice Available with Scratch Game

Other Useful Units

Bytes

- Collection of 8 bits: 11010011
- How many different values represented in a byte?
$-2^{8}=256$ values
- Abbreviation: Use B for Bytes vs. b for bits

Hexadecimal numbers

- Base-16
- Why might hexadecimal numbers be useful? - Two hex digits per byte
- What characters should we use?
$-0,1,2,3,4,5,6,7,8,9, a, b, c, d, e, f$
- 11010011 in hex is $0 x d 3$

Today's Summary

Today's topics

- All computing devices equivalent given sufficient time and storage
- Abstractions of lower layers hide complexity
- Bits: Two states (on vs. off, true vs. false)
- Represent unsigned numbers with binary numbers
-N bits can represent 2^{N} different values
Announcements
- Homeworks 9 and 10 Available
- 9 Due before Thanksgiving; 10 after
- No programming
- Final Project will be to use Scratch to prototype some deign
- Exam 2 graded by Monday

