

Intelligent Sheet of Paper

Chess: Mechanical Turk

Automaton Chess Player

- Chess-playing machine 1770-1854
- Play strong game of chess against human opponent
Arms move chess pieces
- Gears shown off inside

The Turk won most games
Europe and the Americas

- Defeated many challengers (Napoleon Bonaparte and Benjamin Franklin)
The Turk: a mechanical illusion
- Human chess master hiding inside to operate the machine
- Revealed in 1820 s

Chess: Deep Blue

Feb 1996: first machine to win chess game vs. reigning world champion

- Kasparov under regular time controls
- Deep Blues loses match

May 1997: Upgrade wins match

- Search 6-8 moves ahead (up to 20 moves)
Kasparov said saw "deep intelligence and creativity" in machine's moves

Claimed person was directing Deep Blue
Change between games to fix weaknesses

What is a Strategy Game?

Examples?

- Split (handgame), Tic-Tac-Toe, Connect 4, Othello, Checkers, Chess

What is a Strategy Game?

Requirements:

- No chance involved (no dice or card games)
- Both players have complete information
- No hidden information (no Stratego or Magic)
- Two players alternate moves
- No simultaneous moves. No races!
- One player can pass..
- Identify ending condition as Win, Tie, or Lose:
- Game ends in a pattern, capture, by the absence of moves

Today's Exercise

Play strategy game to help you analyze your "strategy"

Want a strategy game you have no prior experience with... (not tic-tac-toe!)

Want you to blindly search for winning strategy

- Enumerate all possible moves
- Record whether each leads to win or loss

Exercise: Variation of Nim
 (Subtraction Game)

Rules:

- 2 players, 7 objects (in general, could be different numbers)
- Take turns removing 1,2, or 3 objects
- Winner: Takes last object
- Strategy game: No chance, full info, take turns, identify winner In order to record states:
- Fill in 7 slots (instead of remove)
- Use X (player 1)

Use 0 (player 2)
Example: $\mathrm{X}, \mathrm{X000}, \mathrm{X000XXX} \rightarrow \mathrm{X}$ wins
Figure out: What is a winning strategy?

- Exhaustively enumerate possibilities until you find it...
- Hint: Player who goes first can always win

Exhaustively Analyze all Possibilities

Possibility: Initial move of $2 \mathrm{X}^{\prime} \mathrm{s}$

$$
\begin{array}{l|l|l|l|l|l|l}
x & x & 0 & 0 & 0 & x & x \\
\hline
\end{array}
$$

$$
\begin{array}{l|l|l|l|l|l|l|}
x & x & 0 & 0 & x & x & x \\
\hline
\end{array}
$$

X	X	O	X	X	X	$O \quad$ No matter what X does, O can win

X might not win if it takes 2 (given 7 initially) Leaving 5 is bad...

Exhaustively Analyze all Possibilities

7 Empty slots
Possibility 1: Initial move of $3 X^{\prime} \mathrm{s}$

$$
\begin{array}{l|l|l|l|l|l|l}
x & x & x & 0 & 0 & 0 & x \\
\hline
\end{array}
$$

$$
\begin{array}{l|l|l|l|l|l|l}
x & x & x & 0 & 0 & x & x \\
\hline
\end{array}
$$

$$
\begin{array}{l|l|l|l|l|l|l|}
x & x & x & 0 & x & x & x \\
\hline
\end{array}
$$

Conclusion: X can always win if it places 3 (given 7 initially) Leaving 4 squares is good...

Can first player win if they do something different?

How can we track all these options?

Use a "game tree"

- Very similar to decision tree
- Show choices that can be made by each player and the results

What should be at root of tree?

- Initial state
- Empty board...

Nim Game Trees

Root: Empty Boad
What do edges in game tree correspond to?

- Moves made by different players

What do nodes (boxes) of game tree show?

- Game positions or states
$\underbrace{}_{\substack{\text { Empty } \\ \text { Board }}}$

If X goes first, what are the next states?

Nim Game Trees

Enumerate all possible moves for 0 given past moves of X

Shows all possible boards after two moves

Computer Chess

Slideshow

htp.//spectrum.leee.org/slideshow/ computing/software/how-computer-chess-changed-programming

Great website

http://www.computerhistory.org/chess/

Interactive Demo:
http://www.computerhistory.org/chess/ interact/index_content.html

Play the interactive demo...

Minimax Algorithm: Game Tree
Associate values:

- 0: tie
- 1: computer win
- -1: opponent win

Strategy

- Assume each makes best move for itself - Pick path to victory! Algorithm
- Start at leaves
- Propagate max value before computer turn
- Propagate min value up before opponent turn
- Choose max path down

Calculate from o's perspective

O: Computer
x. Human
X: Human O's turn next...

Strongly Solve?

Nim and tic-tac-toe have relatively few board positions

- Can exhaustively search every possibility
- Can determine best strategy ahead-of-time and hard-code solution
Chess: too many board positions to exhaustively search
- Can only search few moves ahead and/or some possibilities at each move
- Determine strategy as play, based on observed positions

Check-Up

Which are true for the minimax algorithm?

- Uses psychology to guess what a human will do
- Uses probability to make the best decisions
- Used for games of chance
- Allows the computer to win every game
- Will find a winning move if it exists
- Assumes human opponent makes best possible moves
- Assigns " 1 " to end states where computer wins
- Propagates min value when it is human's turn next
- Can result in a huge number of states for complex games like chess
- Humans can use minimax algorithm

