Announcements

Homeworks 9 and 10 NOW Available

- HW 9 Due tomorrow 5pm (Tue 11/22)
- Explore Binary Numbers and Gigapan
- HW 10 Due after Thanksgiving (Wed $11 / 30$)
- Watch TED talks about TECHNOLOGY and write essay
- Have enough info to complete both

No lecture this Wednesday
Exam 2 graded and returned

Motivating Example

Ben only rides his bike to class if he overslept, but even then if it is raining he'll walk and show up late (he hates to bike in the rain). But if there's an exam that day he'll bike if he overslept, even in the rain.

It's raining,

Ben overslept,

and there's an exam

Will Ben bike today????

UNIVERSITY of WISCONSIN-MADISON
Computer Sciences Department
CS 202: Introduction to Computation \qquad
How does a computer... act so logically?

Reproduction
www Catoonstock comm campt do logicin
$\left\{\begin{array}{l}I \text { cam do logic. } \\ \text { Therefore, } I \mathrm{am} \text { not } \\ \text { a conpuiter }\end{array}\right.$

Propositional Logic: History

Aristotle

- Law of contradiction
- ..it will not be possible to be and not to be the same thing
- Law of excluded middle
- Everything must either be or not be
- Man is mortal, Socrates is a man, therefore, Socrates is mortal
Stoic Philosophers (3 ${ }^{\text {rd }}$ century $B C$)
- Basic inference rules
- If p then q; not q; therefore not p

De Morgan and Boole (19 th century)

- Symbolic logic - "automated", "mechanical"
C. Shannon (1930s)
- Proposal to use digital hardware
- 1 = True; 0 = False

Simple Example:
 Boolean Variables

Ed goes to the party if and only if Stella does

Choose "Boolean variables" for 2 events
Each boolean variable is either TRUE or FALSE
E: Ed goes to party
S: Stella goes to party
Relationship between E and S?
$E=S$

Simple Example:
 Logical NOT, AND

Ed goes to the party if and only if Dan does not and Stella does.

Choose "Boolean variables" for 3 events:
E: Ed goes to party
D: Dan goes to party
S: Stella goes to party

$$
E=(N O T D) \text { AND } S
$$

Alternately: $E=\bar{D}$ AND S

Simple Example:

Logical OR
Ed goes to the party if and only if Dan goes or Stella goes
Choose "Boolean variables" for 3 events:

- E: Ed goes to party
- D: Dan goes to party
- S: Stella goes to party
$E=D \quad O R \quad S$
E is TRUE if one or both of D and S are TRUE
WARNING: In English OR has additional meaning!
- Example: You can eat an orange OR an apple
- Use term "Exclusive OR" or "XOR" for this usage

Boolean Expressions

Composed of Boolean variables (True=1, False=0)
Three Basic Operators: AND, OR, and NOT

Examples

- D AND (P OR (NOT Q))
- C OR D OR E

Boolean Algebra Shorthand
A AND B
A OR B
$A \cdot B$
NOT A
$A+B$
NOT A
(AB)

$$
A+B
$$

$$
19
$$

Truth Table: AND

Lists the truth value of the Boolean expression for all combinations of values for the input variables.

Boolean Expression
$E=D$ AND S
$E=D \cdot S$
$E=(D S)$

D	S	E
0	0	0
0	1	0
1	0	0
1	1	1

Truth Table: NOT
values of input s of input variables
D, S.

le. NOT

Truth Table: OR

Boolean Expression

$E=D O R S$
$E=D+S$

D	S	E
0	0	0
0	1	1
1	0	1
1	1	1

Truth Table Example: (NOT D) AND S
$E=\bar{D} A N D S$
May be easier if show NOT D in as row of Table

D	S	E
0	0	0
0	1	1
1	0	0
1	1	0

Truth Table Example:
 D OR (NOT S)

Boolean Expression

What is E?!?

$$
E=D O R \bar{S}
$$

D	S	E
0	0	1
0	1	0
1	0	1
1	1	1

Boolean Logic in Scratch:
 $E=(N O T D)$ AND S

Three Variables: E, D, S

- No real booleans
- Set D and S to true or false
- Value of E depends on D, S

Will Ed go to the party...

- D=False, S=False?
- No
- D=False, $S=$ True?
- Yes
- $D=$ True, $S=F a l s e$? - No

- $D=$ True, $\mathrm{S}=$ True?
- No

What does Boolean Logic have to do with Computers?

1) Reasoning in many algorithms uses boolean logic

How can one use boolean logic in Scratch programs?
2) Modern computers are themselves built \dagger from boolean logic

Basic building block, logic gates, perform boolean logic;

Order of Operations

Are these two expressions the same?

- $E=($ NOT D) AND S
- $E=$ NOT (D AND S)

In first expression, when does Ed go to party?

- D does not go AND S goes

In second expression, when does Ed go to party?

- D does not go AND S goes
- D goes AND S does not go
- D does not go AND S does not go

How would you construct in Scratch?

| set to not | $D=$ true | and | $s=$ true |
| :--- | :--- | :--- | :--- | :--- |
| set $E=$ to not | $D=$ true and | $s=$ true | |

Variables are NOT formulas!

What is output of script?

Circuits compute functions

Every combinational

 circuit computes a Boolean function of its inputs

Inputs

Combinational circuits and control

How would you express:

- "If data has arrived and packet has not been sent, send a signal"
- Need 3 boolean variables: D, P, S
$\mathrm{S}=\mathrm{D}$ AND (NOT P)

P

Ben Revisited

Ben only rides to class if he overslept, but even then if it is raining he'll walk and show up late (he hates to bike in the rain). But if there's an exam that day he'll bike if he overslept, even in the rain.

What boolean variables do we need?
B: Ben Bikes (Output)
R : Raining
E: Exam today
O: Overslept
Can you create Boolean expression for B
in terms of R, E and O?

Three Equivalent Representations

Boolean Expression

$E=S A N D \bar{D}$

Boolean Circuit

Truth table:
Value of E for every possible D, S.
TRUE=1; FALSE= 0.

D	S	E
0	0	0
0	1	1
1	0	0
1	1	0

Ben Revisited

Ben only rides to class if he overslept, but even then if it is raining he'll walk and show up late (he hates to bike in the rain). But if there's an exam that day he'll bike if he overslept, even in the rain.

What boolean variables do we need?
B: Ben Bikes (Output)
R: Raining
E: Exam today
O: Overslept

$$
B=O \cdot \bar{R}+O \cdot E
$$

Ben's truth table

Ben only rides to class if he overslept, but even then if it is raining he'll walk and show up. But if there's an exam that day he'll bike if he overslept, even in the rain

O	R	E	B
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Truth table \rightarrow Boolean expression

Sum of Products:
Use OR of all input combinations that lead to TRUE output
$B=O \cdot \bar{R} \cdot \bar{E}+O \cdot \bar{R} \cdot E+O \cdot R \cdot E$
Can simplify expression:
$B=O \cdot \bar{R}+O \cdot E$

O	R	E	B
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

Ben's truth table

Ben only rides to class if he overslept, but even then if it is raining he'll walk and show up. But if there's an exam that day he'll bike if he overslept, even in the rain

O	R	E	B
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

Boolean Expression \rightarrow Gates

$B=O \cdot N O T R+O \cdot E$

AND, OR, and NOT gates can implement every Boolean function!

Reverse Engineer
 Boolean Expression

How to determine Approach: Explore all hidden function? input combinations

Today's Summary

Today's topics

- Boolean logic: Operates on True (1) and False (0) - Operators: AND, OR, NOT
- Three equivalent representations:
- Boolean expressions
- Combinational circuits
- Truth Tables

Announcements

- No lecture this Wednesday!!
- Homework 9 due tomorrow by 5:00
- Exam 2 returned

Exam 2 Distribution

