Announcements

Homework 10 (LAST!!) due TODAY by 5 pm
Final Project : Card Game

- Due December 12 - In-class Demos

Intermediate Deadlines

- Wed ($11 / 30$): Find project partner -- TODAY
- Google Doc to find others (email to cs2O2-tas@cs.wisc.edu)
- Fri (12/2): Project proposal
- At least 1 sentence email to cs202-tas@cs.wisc.edu (cc partner)
- Writing more is useful
- Wed (12/7): Project draft to Learn@UW dropbox
- Whatever you have completed

EXTRA Instructor Office Hours
Tuesday and Thursday -- 1:30-4:30

UNIVERSITY of WISCONSIN-MADISON Computer Sciences Department

202: Introduction to Computation
Professor Andrea Arpaci-Dusseau
How does a computer...
remember?

"He wants a system with lats of
memaxy, but wothout a movse."

Today's Challenge

How can we remember information with just

- AND
- OR
- NOT
?????????

Quick Review: Boolean Logic

How to express:

Matt will go to party if and only if Sue goes to party?

Two boolean variables: M and S
$M=S$
$S \longrightarrow M$

More Complicated Expression

Matt doesn't like changing

 his mind...Matt will go to the party if Sue goes or if he already wanted to go

Sequential Circuits

Sequential Circuit (vs. Combinational)

- Stores information: state
- Output depends on state + input
- Given same input might produce different output, depending on stored information
- Example: ticket counter
- Advances when push button, output depends on previous state
- Cycles are allowed
- Can have feedback from output to input
- Useful for building memory!

More Complicated Expression Matt doesn't like changing his mind...

Matt will go to the party if and only if Sue goes or he already wanted to go

Problem with this circuit (or Matt)?
Once going, can't change mind! Once $M=1$, always $M=1$

How can Matt change his Mind?

Matt will go to the party if and only if sue goes OR
(he already wanted to go AND
Rita does not go)

How would you express?

$M^{\prime}=S$ OR (M AND NOT R)
R, S: "control" inputs What is S doing? Setting state (to 1)
What is R doing?
Resetting state (to 0)

How can Matt change his Mind?

Matt will go to the party if Sue goes OR if the following holds: (he already wanted to go AND Rita does not go)

Random Access Memory (RAM)

Memory: Remembers lots of bits, not just 1 bit

- Logical $k \times m$ array of stored bits
$\left.\begin{array}{ll}\text { Address Space: } \\ \text { number of locations } \\ \text { (usually power of 2) }\end{array}\right)$

Convenient 1-Bit Memory

Two inputs: D (data) and WE (write enable)

- when $W E=1$, latch is set to value of D
- when $W E=0$, latch holds previous value (ignores D)

Mystery Circuit
What does this combinational circuit do?

Example RAM Operation
What happens when:

Cache Analogy: Inefficient Library

Distance covered?

- 1000 checkouts/returns per day
- $50 \mathrm{ft} \times 2 \times 1000=100,000$ feet $=\sim 20$ miles

Please help, she's worn down and customers are waiting too long!!! Ideas?

Today's Summary

Sequential circuits (vs. combinational)

- Can remember values using feedback loops in circuits!
- Implement Random Access Memory (RAM)

Homework 10 (LAST!!) due TODAY by 5 pm
Final Project : Card Game

- Due December 12 - In-class Demos

Intermediate Deadlines

- Wed ($11 / 30$): Find project partner -- TODAY
- Google Doc to find others (email to cs202-tas@cs.wisc.edu)
- Fri (12/2): Project proposal
- At least 1 sentence email to cs202-tas@cs.wisc.edu (cc partner)

Writing more is useful

- Wed (12/7): Project draft to Learn@UW dropbox - Whatever you have completed

EXTRA Instructor Office Hours
Tuesday and Thursday -- 1:30-4:30

