UNIVERSITY of WISCONSIN－MADISON
Computer Sciences Department
CS 202：Introduction to Computation
Professor Andrea Arpaci－Dussea

What problems stretch the limits of computation？
 Put the laptop on your desk．

What is Brilliance？

Ability to find＂needle in a haystack＂
－Mozart found＂satisfying assignments＂to our neural circuits for music appreciation
－Relatively easy to identify the fact needle has been found

$$
\begin{aligned}
& \text { 都不市 } \\
& \frac{8}{8}+\cdots
\end{aligned}
$$

What is a computational analogue of this phenomenon？
Many hard computation problems require solutions involving finding a needle in a haystack

Discussion

Is there an inherent difference between

```
being brilliant
```

and
being able to appreciate brilliance？

Compare 4 Algorithms

1．Identify path between nodes of graph
2．Minimal spanning tree
3．Monkey puzzle
4．Travelling salesperson

Which ones are easy and which are hard to solve？

Problem 1: Path?

Social network or graph

- Each node represents student
- Two nodes connected by edge
hose students are friends

Scenario:

- Julia starts a rumor
- Will it reach Ronak?
- Is there a path or connection
between two?

How does running time depend on network size (number of edges, E)

- Never need to visit an edge

Never need once
more than once

- At most O(E)
- Not a hard problem

Analysis of Monkey Puzzle

For N cards, number of arrangements to examine is $O(N!)$

Assume can analyze one arrangement in 1 microsecond
How long to solve for $\mathrm{N}=9,16,25$?

Requires brilliance to solve quickly!
\square

	Politicians Visiting all ball parks in US Collecting coins from meters Delivering mail Star imagery DNA sequencing Computer networks Power cables

Try a Greedy Algorithm

Small graph with 4 cities

Find two closest cities - A-B

Connect next closest

$$
\text { - } A-B-D
$$

- $(20+21)$

Connect next closest

- A-B-D-C

Connect back to start (A)

- $A-B-D-C-A$
($20+21+22+1000=1063)$

Greedy approach does not work for TSP!

A Traveling Salesperson Solution

Approach

- Compute cost of every route

Worst-case

- Path connecting every city

Build every route

- Pick starting city
- Pick next city ($\mathrm{N}-1$ choices)
- Pick $3^{\text {rd }}$ city ($\mathrm{N}-2$) choices

Number of routes?

- O(N!) (N factorial)
- No polynomial solutions are known!

Enumerate All Paths...

$20+60+22+50=152$
$A-B-D-C-A$ $20+21+22+1000=1063$
$A-C-B-D-A$ $1000+60+21+50=1131$
$A-C-D-B-A$ $1000+22+21+20=1063$
$A-D-B-C-A$
$50+21+60+1000=1131$
$A-D-C-B-A$
$50+22+60+20=152$

Common Solution for Problems Requiring "Brilliance"

Exhaustive Search

Naïve algorithms for many "needle in a haystack"
tasks involve checking all possible answers

- Combinatorial Explosion
- Exponential running time

Common in many interesting problems

Can we design smarter algorithms?

Try to Solve TSP Problems
http://www.tsp.gatech.edu/games/tspOnePlayer.html

P vs NP Question

P: Problems for which solutions exist in polynomial time

- $c N^{k}: c$ and k are fixed integers; N is input size
- $O(1), O(\log N), O(N), O(N \log N), O\left(N^{2}\right), O\left(N^{3}\right)$
- Example: Searching, sorting, Path, Spanning Tree
- Reasonable, tractable

NP: Problems where solution can be checked in polynomial time

- Examples: Monkey Puzzle, Traveling Salesman
- Current solutions require super-polynomial-time - $\mathrm{O}\left(2^{\mathrm{N}}\right), \mathrm{O}\left(\mathrm{N}^{\mathrm{N}}\right), \mathrm{O}(\mathrm{N}!)$
- Unreasonable, intractable

Question: Is $P=N P$?

- "Can we automate brilliance?"
- Computer scientists have not yet proved equal or not equal

NP-complete Problems

Problems in NP that are "the hardest"

- If they are in P then so is every NP problem
- All NP-complete problems essentially equivalent

How do we handle NP-Complete Problems?

1. Heuristics

- Algorithms that produce reasonable solutions in practice

2. Approximation algorithms

- Compute provably near-optimal solutions

Today's Summary

P vs NP

- P problems can be solved in polynomial time
- Example: Minimal spanning tree uses a greedy algorithm to find shortest path connecting all nodes
- NP problems can only be checked in polynomial time
- Unknown if polynomial-time solutions exist
- Naïve solutions exhaustively examine all possibilities

Announcements

- Homework 8 Due Friday
- Exam Review Friday
- Exam 2 on Monday

