

What is sorting?

Put keys (and associated data) in specified order

- Ascending or descending
- Numerical or alphabetical

Sort keys and keep data with it

- Key: High score ; Data: name
- Key: Exam 1 grade; Data: everything else...

What is sorting?

Sorting in common language has different meaning This is not what we mean by sorting: Not organizing or classifying into categories

Why is sorting important?
 General:
 Can find what you want faster given sorted data

Sorted data is easier to search through

- Can apply binary search instead of linear search

Trivial to find minimum and maximum elements

- First and last in list (or top W elements!)

Easy to find duplicate values

- Adjacent to each other in list

Easy to find patterns, anomalies, gap

- Networking: TCP can find missing packets

How would you sort?

709285793348199240531443148269989249519 2911136985798522717913943433180516
$N=25$ keys (or elements)

Think about what algorithm you would use

Basic operations

- Compare two numbers to each other ($>,<$, or $=$)
- Move keys around in list (insert, delete, replace)

Review:

How to find Min in List?

```
when I receive F-ndMM M
set [ndexv to [1]
set minv to item Index of Unsorted LStv)
set Index of minv to Index
repeat (length of Unsorted Lst - )
if item Index of [Unsorted LSt v] < min
    set min v to item Index of Unsorted LSt v
    set Index of minv to index
change Index - by 1
```

Loop through List using

index variable

Input:

- List : Unsorted List

Output:

- Min
- Min index

Local variable:

- index

Robust to length of List

Many Different Sorting Algorithms

Today: Slow algorithms, but easy to understand

- Selection sort
- Insertion sort

Next Lecture: Faster algorithms

- Mergesort
- Quicksort

How can you sort using Minimum?

82
Unsorted list
How can you sort list of numbers if you can find the minimum?

- Move numbers into "sorted list"

 82	Algorithm 1: Selection Sort To sort data... Repeat until nothing in unsorted list: - Find minimum element - Add element to sorted list - Delete from unsorted list

How to Implement Selection Sort in Scratch?

Control code
Asks Sorter Sprite to do work
when A ditiked
ask How large I sthe listr) and wait
set [Sctengh to answer
sav Please sort a ist for me. for 2 set
ay
say join The list hass join ust lengtin [elements. for 2 sect
Wroadast [Sorturiv and wate
sey [an you please checkit too? for 2 seccs
Girondatat [icos uli
ond wit
if Ust sortcar = 11
say Tranks It 1 s sorted for 2 secs
say Oh nol It 1 n not sortedl for 2) secs

Create unsorted lis

Get the list sorted

Check that the list really is sorted

Sorter Sprite: Helper Functions

Make Lis \dagger
Check List

 dabate all of Unorect

When I receave [heck Lusiv
 set $1 / \log _{1}$
set [revousv to item I of Sorted LSt V)
repeat Ust Length
Item (1) of [Sored LSt v) < previous
set LSt sorted? to 0
set previousv to item (of [Sorted Ust v)
change |l| by 1
-

Selection Sorter Sprite

```
when I receive Sort LISTV
    delete allV of Soored Lst v
    repeat List Length
    broadcast Find MIत and wait
    add min to Sorted Lst - 
    delete Index of min of Unsorted Lst - 
    delete Index of min
```


Selection Sort: Two Lists
Finds minimum remaining element in unsorted
Adds to Sorted (in order)
Deletes minimum from unsorted

Top W words for HW 6?

```
when I recevive [Sort LSTV]
delete allv of Sorted Lst - 
repeat Ust Length
    broadcast [m|MM\ and wait
    add min to Sorted Lst - 
    delete Index of min of Unsorted LSt v]
    delete incex of min of
```

1 receive $\sqrt{\text { Pind Min }}$
set [moex - to [1]
set min to item Index of Unsorted List -
set [ndex or minv to index]
peat length of [Unsorreo ust -
Item [index of [Unsorted LIst - - min
set [minv to (item Index of Unsorted Lss v]
set moex of min to index
change [ndex - by 1]

Very similar task: Find maximum in TalliesList W times

- Add those W items to MostPopularTallies and MostPopular
- Delete W items from TalliesList and UniqueLis \dagger

Selection Sort: One List Demo

Swaps minimum with key at desired location

Selection Sort in Scratch:

One List

```
mhen I receve [sot usiv
set[|v to 1]
*)
set mnv/ to item (1) of [Unsored listv)
    set ndex ormiv to i]
    sot IT to !
    repeat untl (1> Ust Length)
    |tem 1) of Unsored Lst-
    set min- to Item 1, of [unsored USTV-1
    set mox ormin to I
    change /TV by 1
```



```
    replace item 11 of Unsorted Ustv with min
    Veplace item ( of (1)
change IV by 1 ,
```

Variable i:
Number of
Number of
sorted elements
Variable j:
Looks for min of
remaining
unsorted
elements (start
at variable "I"
at variabl
in each
iteration)

Insertion Sort

Divide cards into two groups: sorted and unsorted

Initial state: 1 sorted card, N-1 unsorted

Repeat for all cards

- Remove $1^{\text {st }}$ card from unsorted portion
- Insert into correct location in sorted list
- Repeat loop
- Keep moving down list until card to left < new card
- Update definition of sorted vs. unsorted portions

Algorithm 2: Insertion Sort

What algorithm do you use to sort cards?

Insertion Sort

```
when I receive [Sort LISTV
set IV to [2
repeat until 1> length of Unsorted LSt v
    set Item - to item 1 of Unsorted Lst - 
    delete (1 of Unsorted Lst v/
    set [1v to 1]
    repeat until item 1-1 of Unsorted Lst - < Item or 1= 1 
    change [v/ by -1
    insert Item at /J of Unsorted Lst v
    change |V by 1
```

Repeat for all cards
Take $1^{\text {st }}$ unsorted card
Take ${ }^{\text {st }}$ unsorted card
Insert

Which Sorting Algorithm is Best?

Compare number of loop iterations as function of N - size of input lis \dagger

Previously analyzed searching algorithms
Linear search: $O(N)$ operations
Binary search: $O\left(\log _{2} N\right)$ operations

Insertion Sort: Iterations?

```
men I receve [Sortustv
repeat until 1> length of Unsorted LSt-\
set fremv to Item 1 of Unsorted LSt\
delete I of Unsored Ustv
    delete I of 
    set [V to 1]
    repeat until (tem 1-1) of Unsored LSTV \ < Item or 1=11
    change [TV by -1)
insert ITem at (1) of Unsorted LStv
    #msert Item at Jor
```

Outer loop?
Always $\mathrm{N}-1$ or $\mathrm{O}(\mathrm{N})$
Inner loop - Worst case? Data in reverse order! Must move key to beginning
$1,2, \ldots . \mathrm{N}-3, \mathrm{~N}-2, \mathrm{~N}-1 \rightarrow \mathrm{~N} / 2$
Best case? Data sorted already! Done immediately
0
Average case? Move to middle of list... $1 / 2$ * Worst case $=\mathrm{N} / 4$ still $\mathrm{O}(\mathrm{N})$
O(N2)

Selection Sort:
 How many loop iterations?

Selection Sort: Two Lists

Size of list: N
2 loops: Outer and inner
How many iterations of outer loop? - N

How many iterations of inner loop?

- $\mathrm{N}, \mathrm{N}-1, \mathrm{~N}-2, \ldots 1$
- Average: N/2

Total?

- $N^{*} N / 2$

Complexity?

- $O\left(\mathrm{~N}^{2}\right)$

Check-Up

T/F: Selection Sort is a $O(N)$ algorithm

T/F: To selection sort in DESCENDING (instead of ASCENDING) order: select MAXIMUM (instead of MINIMUM) element

What is the 2nd version of insertion sort doing?

```
man r raver Femuco
*)
```



```
delete (1) Of Ungrem use
adetelol ons
```



```
Cange [TV wy (1)
Misert ITem ot I of Userceals:
Magemem ot I) or
```


Today's Summary

Intuitive but Slow Sorting

- Selection sort: Select minimum and make next in list
- Insertion sort: Take next and insert in correct place
- Both require operations $O\left(N^{2}\right)$
- Tip: Always write check code (easier than work code)

Announcements

- Voting for HW 5 Music by Noon today
- HW 6 : Due Friday at 5pm
- Friday: No lecture; Watch video on schedule page
- Digital StudyHall: Experience of Technology Development for Improving Rural Education in India.
- 48 minute talk from 2009 at Harvey Mudd
- Few related questions in HW 7

Alternate Implementation of
 Insertion Sort in Scratch

```
When I receve [sortutv
    set [1/ to [1]
    repeat until I= ust Length
    change |TV by 1
    set[JV to !]
    repeat until (tem 1-1 of |insored ISTV < Item I of Unsored Lstv) or 1=11
    set [mpr to (tem( 1-1) of Unsored list v)
    replace item (1-1) of Unsorted LStV with item I of Unsorted LSt`
    replace item (1) of Unsorted listv with tmp
    *)
```

Repeat for all cards
Take $1^{\text {st }}$ unsorted card
Insert into correct location in sorted list: Repeat loop
Keep moving down list until card to left is smaller than new card
OR at beginning of list

