CS-537: Midterm Exam (Fall 2004)
The Legend of the Fall

Please Read All Questions Carefully!

There are eight (8) total numbered pages.

Please put your student ID (but NOT YOUR NAME) on every page.

Name and Student 1D:

Grading Page

Points | Total Possible

Part I: Short Answers (12 x 5) — 60

Part II: Long Answers (2 x 20) — 40

Total 100

Part I: Short Questions

The following questions require short answers. Each of 12 is worth 5 points (60 total).

1. What is a context switch? Describe what the OS must do to implement a context switch correctly.

2. When a Unix process calls fork(), the system creates (in the child) a nearly exact copy of the calling
(parent process). Why is the copy “nearly exact” and not an “exact” copy of the parent process?

3. Consider the properly synchronized routine:

// assume ‘‘balance’’ is a global variable
void update(int amount) {
mutex_lock(lock);
balance = balance + amount;
mutex_unlock(lock);

However, there is one “rogue” thread that updates balance in a different way, by calling its own special
routine:

// assume ‘‘balance’’ is a global variable
void rogue_update(int amount) {
balance = balance + amount;

}

When we are writing multi-threaded code, is there some way to prevent threads from accessing and
updating shared data structures in this “rogue” fashion?

4. In class, we talked about the following possible solution to the two-thread synchronization problem:

while (turn == (1 - threadID))

i 1/ spin
balance = balance + amount; // critical section
turn = 1 - threadlD;

In this solution, assume that “turn” is initialized to “0”, and that there are only two threads that run.
Does this solution provide mutual exclusion? (Explain)

5. Some architectures provide instructions to aid with writing synchronization routines. One such in-
struction was “test-and-set”, as described in class. Describe how test-and-set works; in doing so,
show how one can use it to provide mutual exclusion.

6. Imagine a new synchronization primitive (a close cousin of our favorite Semaphore) called the WhatsItFor.
A WhatsItFor has an initial value (which is initialized by the user), and two related routines, One ()
and Done (), that work as follows. One() waits for the value of the WhatsItFor to be less than zero,
and then increments the value by one. Done() decrements the WhatsItFor by one, and then wakes
one waiting thread (if there is one). Both One() and Done () execute atomically.

Show how to use a WhatsItFor (specifically, One() and Done()) to build a simple lock around
a critical section. Make sure to specify the initial value of the WhatsItFor.

7. In class we discussed the following “solution” to the dining philosopher’s problem:

acquire(int i) {
if (if < 4) {
sem_wait (chop[il);
sem_wait (chop[i+1]);
} else {
sem_wait (chop[0]);
sem_wait (chop[4]);

Does this solution lead to deadlock? (Why or why not?)

8. Reader/writer locks were implemented in class as follows, with the semaphores writeLock and mutex
initialized to 1, and the counter readers initialized to 0.

void getWriteLock() { void releaseWriteLock() {
sem_wait (writeLock) ; sem_post (writeLock);

} }

void getReadLock() { void releaseReadlLock() {
sem_wait (mutex); sem_wait (mutex);
readers++; readers--;
if (readers == 1) if (readers == 0)

sem_wait (writeLock) ; sem_post (writeLock);

sem_post (mutex) ; sem_post (mutex) ;

What is the basic problem that can occur if there is a continuous stream of readers that grab the read
lock?

9. When discussing the difference between Hoare and Mesa semantics for condition variables inside of
monitor routines, we focused on the following producer/consumer code segment:

produce () { consume () {
if (fullEntries == MAX) if (fullEntries == 0)
cond_wait (empty) ; cond_wait(full);
// £ill buffer // empty the buffer
fullEntries++; fullEntries--;
cond_signal (full); cond_signal (empty) ;
} }

When using Mesa semantics, the semantics of condition variables demanded that the if statements
be changed to while statements. Describe why Mesa semantics demand the change from “if”
to “while” in the producer/consumer code above.

10. Assume a set of five jobs arrives in a system to be scheduled at roughly the same time; each job runs for
10 seconds if running by itself on the CPU. Compute the average response time and the average
turnaround time for a round-robin policy with a 500 millisecond time slice. Show your work (as
much as possible)

11. The shortest-job-first (SJF) and shortest-time-to-completion-first (STCF) policies are both unrealistic
policies to implement in a general purpose operating system. Why?

12. Assume a multi-level feedback queue scheduling policy. In class, we discussed a provision that period-
ically moved all jobs back to the topmost priority queue. What problem does this rule solve?

Part II: Longer Questions
The second half of the exam consists of two longer questions, each worth 20 points (total 40).

1. The Battle for Control. In this question, we discuss different methods that the operating system
can use to “gain control” of the CPU.

a): The classic mechanism the OS uses is a timer interrupt. Please describe how the OS uses a timer
interrupt to gain control of the CPU, and why this is important.

b): Imagine a new hardware mechanism that counts the the total number of instructions that have
been executed and then raises an interrupt after some fixed number of instructions have passed. The
OS uses this mechanism by configuring an instruction-counter interrupt register (ICIR); by setting the
value of the ICIR to x, the OS makes sure that after = instructions are executed, an interrupt is raised.
Is the ICIR a good mechanism for the OS to use to gain control of the CPU? Why or why not?

c): Assume we are using the instruction-counter interrupt register, but we wish to mimic the behavior
of the good old timer interrupt; that is, we want a clock tick to go off every 10 milliseconds or so. How
would you use the instruction-counter interrupt mechanism to achieve this effect?

d): Now imagine a new hardware mechanism that counts the number of load and store instructions
that have been executed, and raises an interrupt after some (configurable) number of loads/stores have
been executed. Is this a good mechanism for the OS to use to gain control of the CPU? Why or why
not?

2. The Best Hash I’ve Ever Had.

Assume you have the following code for a multi-threaded hash table, which inserts an object obj into
the hash table, to be associated with the key key. Assume that the hash table is implemented as an
array of linked lists; first, we hash (using modulo) to find which list to put an item on, and then we
insert the item into that list.

void hash_insert(int key, object_t *obj) {

int whichList = key % HASH_SIZE;
list_insert (hashlLists[whichList], key, obj);

Assume the code to insert an item onto a list looks something like this (some details omitted for
clarity):

// create ‘‘tmp’’, which contains the key ‘‘key’’ and object ‘‘obj’’

tmp->next = head;

head = tmp;

a): Why does the code inside of 1ist_insert need to be synchronized? (i.e., what problems can
occur if two threads both try to insert items into the same list at nearly the same time?)

b): Add a single lock into hash_insert () to fix the problem.

c): What is the biggest performance problem with this single-lock solution?

d): Now add more locks to hash_insert (as many as you want)to improve the performance (or
rather, the potential concurrency) of accessing the hash-table data structure.

