CS-537: Midterm Exam (Fall 2004)
The Legend of the Fall

Please Read All Questions Carefully!

There are eight (8) total numbered pages.

Please put your student ID (but NOT YOUR NAME) on every page.

Name and Student ID:

Grading Page

Points| Total Possible

Part I: Short Answers (12 x 5) — 60
Part Il: Long Answers (2 x 20) — 40
Total 100

Name:

Part I: Short Questions
The following questions require short answetach of 12 is worth 5 points (60 total)

1. What is acontext switcR Describe what the OS must do to implement a context switatecidy.

A context switch is loosely defined as the stopping one psdma® running, saving its state, restoring the state
of another job, and starting it running. One could give varylevels of details on what the OS must do to enact
the context switch, but all we were really looking for was $h&ing and restoring of state (e.g., registers, PC,
stack pointer, etc.)

2. When a Unix process calls fork(), the system creates @rcttild) a nearly exact copy of the calling (parent
process). Why is the copy “nearly exact” and not an “exacpycof the parent process?

One major difference is the PID, which is reflected in the metode of the fork(): the parent process’s return
code is the PID of the child, and the child’s return code is 0.

3. Consider the properly synchronized routine:

/1 assume ‘‘balance’’ is a global variable
voi d updat e(i nt anount) {

mut ex_| ock(1 ock);

bal ance = bal ance + anmount;

mut ex_unl ock(l ock);

}

However, there is one “rogue” thread that updates balanadalifferent way, by calling its own special routine:

/1 assume ‘‘balance’’ is a global variable
voi d rogue_updat e(int anount) {
bal ance = bal ance + anmount;

}

When we are writing multi-threaded code, is there some wagyréwent threads from accessing and updating
shared data structures in this “rogue” fashion?

We gave full credit to all on this one, because it was a bit e@aclWhat we meant to ask was: can we change
theupdat e() routine in any way to avoid the problems caused lbgue_updat e() ? (assuming you still
have to use the 'balance’ variable). The basic answer wagmeaded code assumes trust among threads, and
hence you have to basically “get it right”. Some people ctBvsuggested that you could make all routines that
touch balance “monitor” routines, which would force a lock@solve the problem — nice!

4. In class, we talked about the following possible solutimthe two-thread synchronization problem:

while (turn == (1 - threadl D))

; /1 spin
bal ance = bal ance + amount; // critical section
turn = 1 - threadl D

In this solution, assume that “turn” is initialized to “0"nd that there are only two threads that run. Does this
solution providenmutual exclusion? (Explain)

The turn variable does indeed provide mutual exclusion:ttima can only be one value at a time and is set
atomically. The problem with this code is of course that &leto unbounded wait — it only works properly if
both threads are periodically entering the critical sectio

5. Some architectures provide instructions to aid withimgisynchronization routines. One such instruction was
“test-and-set”, as described in clagescribe how test-and-set worksin doing so,show how one can use it
to provide mutual exclusion

Test and set works as follows. Assume you haest - and- set <address>, val ue. This returns the
old value ataddr ess and sets the new value to kal ue. This is all done atomically.
Test and set can be used as follows:

whil e (test-and-set(lockaddr, true) == true)
; 11 spin wait
<critical section>
lock = false; // note, no need to test-and-set here

6. Imagine a new synchronization primitive (a close cousiouw favorite Semaphore) called th#at sl t For .
A What sl t For has an initial value (which is initialized by the user), ama trelated routinesPpne() and
Done(), that work as followsOne() waits for the value of th#Vhat sl t For to be less than zero, and then
increments the value by onBone() decrementsth@hat sl t For by one, and then wakes one waiting thread
(if there is one). Botlne() andDone() execute atomically.

Show how to use avhat sl t For (specifically, One() and Done()) to build a simple lock around a
critical section. Make sure tespecify the initial value of theWhat si t For .

A WhatsltFor is kind of like an inverted semaphore; it justiets the other direction. Hence, to provide mutex,
justinit to -1 instead of 1 (as we would with a binary semajeh)or

What sl t For w;
WhatsltFor_Init(&w -1); // init to -1

What sl t For _One(&w) ;
<critical section>
What sl t For _Done(&w) ;

7. In class we discussed the following “solution” to the dimphilosopher’s problem:

acquire(int i) {
if (if <4) {
sem wait(chop[i]);
sem wait (chop[i+1]);
} else {
sem wait (chop[0]);
sem wait(chop[4]);

}

Does this solution lead to deadlock¥wWhy or why not?)

No, it does not, because of thé se clause in the code. Specifically, the 4th philosopher grabddcks in a
different order (0 then 4, instead of the expected 4 then @ndd, the cycle is broken and deadlock is avoided.
However, it is not an optimal solution from a concurrencynstpoint.

8. Reader/writer locks were implemented in class as follavith the semaphoresr i t eLock andmnut ex ini-
tialized to 1, and the countereader s initialized to 0.

void getWitelLock() { void rel easeWitelLock() {
semwait(witelLock); sem post (writelLock);

} }

voi d get ReadLock() { voi d rel easeReadLock() {
sem wai t (nut ex) ; sem wai t (nut ex) ;
reader s++; readers- -;
if (readers == 1) if (readers == 0)

sem wait(witelLock); sem post (writelLock);

sem post (nut ex) ; sem post (nut ex) ;

What is the basic problem that can occur if there is a contiswstream of readers that grab the read lock?
Once a single reader grabs the lock, no writer can proceed afitreaders have released the lock. Hence,
writers can starve with this solution.

9. When discussing the difference between Hoare and Mesangis for condition variables inside of monitor
routines, we focused on the following producer/consumdecegment:

produce () { consume () {
if (full Entries == MAX) if (fullEntries == 0)
cond_wait (enpty); cond_wait(full);
[fill buffer /1 enmpty the buffer
ful l Entries++,; fullEntries--;
cond_signal (full); cond_signal (enpty);
} }

When usingMesasemantics, the semantics of condition variables demarmdedhel f statements be changed
towhi | e statementsDescribe why Mesa semantics demand the change from “if” to “wuile” in the pro-
ducer/consumer code above

Mesa semantics say that the signal, while waking a singléngaihread, does not immediately transfer control
to that thread. Hence, when the waking thread finally rungust recheck the condition, simply because the
condition it relies upon being true may no longer be true. WBgcause another thread could have slipped in
after the first thread changed the condition and changeddkba

10. Assume a set of five jobs arrives in a system to be schedulexighly the same time; each job runs for 10

11.

12.

seconds if running by itself on the CPU. Compute #iverage response timend theaverage turnaround
time for around-robin policy with a500 millisecondtime slice. Show your work (as much as possible)

Response time is the time from submit to first run. Hence,Verjdibs that are round-robin scheduled with a
500 millisecond (ms) time slice, we have: 0 ms (first job) + 560+ 1000 ms + 1500 ms + 2000 ms. Average
of these values is the sum divided by 5, or 5000 ms divided tychvws 1000 ms.

Turnaround time is the time from submit to completion. Witk jobs that each run for 10 seconds, we know
that the total time for completion for all jobs is 50 secon#tence, the last job completed at 50 seconds, the
job before that at 49.5, the job before that at 49.0, and 486, 48.0. The average turnaround time is thus the
average of 48, 48.5, 49, 49.5, and 50, which is 49 seconds.

The shortest-job-first (SJF) and shortest-time-tofetion-first (STCF) policies are both unrealistic poliie
to implement in a general purpose operating system. Why?

These are unrealistic primarily because one cannot in galierow what the run-time of a job will be before it
is run. Starvation is also an issue but not the primary prableere.

Assume a multi-level feedback queue scheduling policyclass, we discussed a provision that periodically
moved all jobs back to the topmost priority queMghat problem does this rule solve?

This rule solves two problems. The primary problem it soigegne of starvation — long-running jobs are
now guaranteed to get some share of the processor. A secppdailem it solves is that jobs that switch
their behavior (e.g., from CPU-bound to interactive) nol gt better served by a scheduler that periodically
re-learns about their behavior.

Part Il: Longer Questions
The second half of the exam consists of two longer questeard) worth 20 points (total 40)

1. The Battle for Control. In this question, we discuss different methods that the aipey system can use to
“gain control” of the CPU.

a): The classic mechanism the OS usestisrer interrupt Please describe how the OS uses a timer interrupt
to gain control of the CPU, and why this is important.

The OS sets the timer interrupt to go off every so often (sagyedd ms) in order to gain back control of the
processor. With this mechanism, the OS knows it will get tobagain and make scheduling decisions. It is
important because without such a mechanism, the OS is gelygon user processes to relinquish control of the
CPU - something that buggy or malicious programs might not do

b): Imagine a new hardware mechanism that counts the the tatdb@uof instructions that have been executed
and then raises an interrupt after some fixed number of ictstins have passed. The OS uses this mechanism
by configuring arinstruction-counter interrupt registefiCIR); by setting the value of the ICIR to, the OS
makes sure that after instructions are executed, an interrupt is raised. Is thR BCgood mechanism for the
OS to use to gain control of the CPU? Why or why not?

Assume that this mechanism, just like the timer interrggiriviledged (i.e., a user process cannot set the ICIR).
Then we have a basic mechanism to regain control of the CPitiednl of setting the timer interrupt to go off
every 10 ms, with the ICIR, we set an interrupt to go off evemnany instructions.

Many of you pointed out that instruction times may vary anddeethis is a little harder to use — a point with
which we agree. However, that in and of itself does not maikegossible.

Some of you pointed out that if an instruction could get imardinite loop, then the mechanism will not work
— a point with which we also agree.

Finally, please do not confuse mechanism with policy! Sipadly, even if ICIR interrupts go off at irregular
intervals, the scheduling policy still could track how loagch process has run for and achieve a particular
scheduling goal. The period of interrupts does not equatithe given to each process!

c): Assume we are using the instruction-counter interruptstegibut we wish to mimic the behavior of the
good old timer interrupt; that is, we want a clock tick to gbafery 10 milliseconds or so. How would you use
the instruction-counter interrupt mechanism to achieisdffect?

Set the ICIR to an initial value (sayinstructions). Record the current timg). Then run a process. When the
ICIR interrupt goes off, record the time agaifz). By calculating the average time per instructidﬁﬁ;—“, we

can make a guess at what value to sdb in order to have the ICIR interrupt us every 10 ms. Of coutise
more such measurements you take, the better your guesgwiiblo could do the measurement on a per-process
basis, assuming that each process will achieve a differe@tage time per instruction.

d): Now imagine a new hardware mechanism that counts the nunfit@siedband store instructions that have
been executed, and raises an interrupt after some (corliglirumber of loads/stores have been executed. Is
this a good mechanism for the OS to use to gain control of tHd7OR'hy or why not?

This is not a good mechanism — if a process enters an infingie tlbat simply branches back to the same point
in the code (and more importantly, does no loads or storbgh the OS will not be able to regain control.

2. The Best Hash I've Ever Had.

Assume you have the following code for a multi-threaded habte, which inserts an objeabj into the hash
table, to be associated with the Kegy. Assume that the hash table is implemented as an array efdiligts;
first, we hash (using modulo) to find which list to put an item @md then we insert the item into that list.

voi d hash_insert(int key, object_t *obj) {
i nt whichList = key % HASH_SI ZE;
Iist_insert(hashLists[whichList], key, obj);

}

Assume the code to insert an item onto a list looks sometlikeghis (some details omitted for clarity):
[l create “‘tnp’’, which contains the key ‘‘key’’ and object '‘obj’’
t np- >next = head;
head = tnp;

a): Why does the code inside bf st _i nsert need to be synchronized? (i.e., what problems can occur if
two threads both try to insert items into the same list atlgehe same time?)

The update of head presents us with a race condition. Imagisénterleaving:

thread 1 thread 2
t np- >next = head;
t np- >next = head,;
head = tnp;
head = tnp;

In this case, the two (separate) tmp variables next fieldsgstiset to the old head, and then the new head will
only end up pointing to the tmp in thread 2 — thread 1's insartivill get lost.

b): Add a single lock intdhash_i nsert () to fix the problem.

You could do this in any way you wanted. Simplest approach:

i nt whichList = key % HASH_SI ZE;

mut ex_| ock(& ock);

l'i st_insert(hashLi sts[whichList], key, obj);
mut ex_unl ock(& ock);

Note you don't have to lock the setting of the thread-prisiidek variableashi chlLi st .
What pained us is when people tried to write their own locksi¢tvwould be OK), but did so incorrectly:

while (lock == true)
; 1] spin

lock = true;

<critical section>

lock = fal se;

This isNOT a working lock!
c): What is the biggest performance problem with this singtekgolution?

The biggest problem with the single-lock solution is thgtrévents concurrent updates to separate lists in the
hash table.

d): Now add more locks thash_i nsert (as many as you want)to improve the performance (or rather, t
potential concurrency) of accessing the hash-table datetste.

Simple — let's add a lock per list.
i nt whichList = key % HASH_SI ZE;
mut ex_| ock(& ock[whi chList]);

i st_insert(hashLi sts[whichList], key, obj);
mut ex_unl ock(& ock[whi chList]);

This enables concurrent updates to separate lists.

