Part |: Short Questions

1. Which of the following are more like policies, and whicleanore like mechanismd=or each answer, circle
policy or mechanism.

(@) The timer interrupt Policy / Mechanism
(b) How long a time quantum should be Policy / Mechanism
(c) Saving the register state of a process Policy / Mechanism
(d) Continuing to run the current process when a disk I/Oriof# occurs Policy / Mechanism

2. For aworkload consisting of ten CPU-bound jobs of all tras length (each would run for 10 seconds in a dedi-
cated environment), which policy would result in thdéowest average response time?
Please circle ONE answer.

(&) Round-robin with a 100 millisecond quantum
(b) Shortest Job First

(c) Shortest Time to Completion First

(d) Round-robin with a 10 nanosecond quantum

3. Processes (or threads) can be in one of three stateaming, Ready, or Blocked. For each of the following
four examples, write down which state the process (or thrisdd:

(a) Waiting inDomai n_Read() for a message from some other process to arrive.
(b) Spin-waiting for a variabl& to become non-zero.

(c) Having just completed an I/O, waiting to get schedulegimgn the CPU.

(d) Waiting inside ofpt hr ead_cond_wai t () for some other thread to signal it.

4. What is acooper ative approach to scheduling processes, and why is it potentidiyd idea?

5. Assume we run the following code snippet. After waitingddlong” time, how many processes will be running

on the machine, ignoring all other processes except thesévied with this code snippet? You can assume that
fork() never fails. Feel free to add a short explanation toryamswer.

voi d
runhMe()
{
for (int i =0; i < 100; i++) {
int rc = fork();
if (rc ==0) {
while (1)
; Il spin forever
} else {
while (1)
; /1 spin forever
}
}
}

Number of processesrunning:

6. In class, we gave the following code as an implementationudual exclusion:

bool ean | ock[0] = lock[1] = false;
int turn = 0;
void deposit (int amount) {
| ock[pid] = true;
turn =1 - pid;
while (lock[1l-pid] & (turn == (1 - pid)))
; /1 spin
bal ance = bal ance + anount;
| ock[pid] = false;
}

Let's say we replace the statemdnirn = 1 - pi d with the statementurn = Bi nar yRandon{(),
where the function Bi naryRandon{) returns a 1 or 0 at random to whomever calls it.
Will the code still function properly? If so, why, and if not, what problem could occur?

7. Assume the following code snippet, where we have two saorag, 'mutex’ and 'signal’:

Thread 1 Thread 2
sem wai t (nut ex) ; sem wai t (mut ex) ;
if (x >0) X4+

sem post (si gnal) ; sem post (si gnal);
sem post (nmut ex) ; sem post (nut ex) ;

sem wai t (signal);

We want 'mutex’ to provide mutual exclusion among the twetus, and for 'signal’ to provide a way for thread
2 to activate thread 1 when X’ is greater than 0. What shouddinitial values of each of the two semaphores
be? (Assume that 'x’ is always positive or zero, and thatdlaee only these two threads in the system).

Value of mutex:
Value of signal:

8.

9.

10.

11.

Which of the following willNOT guarantee that deadlock is avoiddel@ase circle all that apply.

(a) Acquire all resources (locks) all at once, atomically

(b) Use locks sparingly

(c) Acquire resources (locks) in a fixed order

(d) Be willing to release a held lock if another lock you wamhkild, and then try the whole thing over again

A number of threads periodically call into the followingutine, to make sure that a file that is shared between
them has already been opened (after calling this routireead might go ahead and call write() on that file, for
example). Assume there is a global intefydr which is set to -1 when the fd is closed, and a global lockk,
which is used for synchronization. Here is the code:

voi d MakeSureFil el sOpen() {
mut ex_| ock(& ock);
if (fd == -1)
fd = open(*‘/tnp/file’ ', O MROWLY);
nmut ex_unl ock(& ock) ;

}

However, you get clever, and decide to re-write the code lésifs:

voi d MakeSureFil el sOpen() {

if (fd == -1) {
nmut ex_| ock(& ock) ;
if (fd == -1)

fd = open('‘/tnp/file’ ', O VRONLY);
mut ex_unl ock(& ock) ;

}
}
Doesthiscode still work correctly? Why? If so, what advantage do we gain by using thisimplementation,
and why isthe condition (f d == - 1) rechecked inside the mutex? If not, why doesn’t it work?

For a workload consisting of ten CPU-bound jobs of vagyengths (half run for 1 second, and the other half
for ten seconds), which policy would result in the lowesatoun timefor the entire workload? Assume that
context switch time is zero for this problem, apl@ase circle all that apply.

(a) Shortest Job First

(b) Shortest-Time to Completion First

(c) Round-robin with a 100 millisecond quantum

(d) Multi-level Feedback Queue

A mechanism that can be used for synchronization is thiéyab turn on and off interrupts.
a) How can you use this to implement a critical section?

b) Why does does it work on a single processor system?

b) Why does’t does it work on a multi-processor system?

¢) Why is this generally a bad idea, whether on a single or nputicessor system?

Part I1: Longer Questions

1. RacetotheFinish
Assume we are in an environment with many threads running e following C code snippet:

int z =0; // global variable, shared anpbng threads
void update (int x, int y) {

z =z +X +y;
}

Assume that threads may all be calling update with diffevahies for x and y.

a): Write assembly code that implements the function updat&gsume you have three instructions at your
disposal: (1)oad [address], Rdest, (2) add Rdest, Rsrcl, Rsrc2, and (3)store Rsrc, [address]. Also, feel
free to assume that when update() is called, the value o$'already in R1, and the value of 'y’ is in R2.

b): Because this code is not guarded with a lock or other syn@ation primitive, a “race condition” could
occur. Describe what this means.

c): Now, label places in thassembly code where a timer interrupt and switch to another threattaesult in
such a race condition occuring.

d): Now, assume we change the C code as follows:

void update (int x, int y) {
z =x +y; I/ note we just set z equal to x+y (not additive)

}

If two threads call update() at “nearly” the same time, thstfiike this: 'update(3,4)’, and second like this:
'update(10,20)’, what are the possible outcomes? If wegpdalock around the routine (e.g., before setting z =
X +y, we acquire a lock, and after, we release it), does thasigh the behavior of this snippet?

