
UNIVERSITY of WISCONSIN-MADISON
Computer Sciences Department

CS 537 A. Arpaci-Dusseau
Intro to Operating Systems Spring 2000

Questions answered in these notes

• What were the primary performance problems with the UNIX FS?

• How does FFS minimize internal fragmentation?

• How does FFS organize its freelist?

• How does FFS allocate i-node and data blocks for locality?

Reading

• “A Fast File System for UNIX” by McKusick, Joy, Leffler, and Fabry

Fast File System for UNIX

A.Arpaci-DusseauCS 537:Operating Systems FFS.fm.2

Motivation

Original UNIX File system from Bell Labs

• Simple and elegant

• Problem: Achieves 20 Kb/sec

2% of disk maximum even for sequential disk transfers!

Why such poor performance?

• Three primary reasons...

Superblock

I-nodes Data blocks (512 bytes)

Unix disk layout

A.Arpaci-DusseauCS 537:Operating Systems FFS.fm.3

Why such poor performance?

Blocks too small (512 bytes)

• Fixed costs per transfer

Seek time, rotational delay, computation

• More indirect blocks needed for same size file

Poor freelist organization

• Consecutive file blocks not close together

• Pay seek cost between even sequential disk transfers

No locality in allocation to disk

• I-nodes far from data blocks

Pay two seeks for every data transfer

• I-nodes of files in directory not close together

Pay seek for every i-node (e.g., ls -l)

A.Arpaci-DusseauCS 537:Operating Systems FFS.fm.4

#1: Larger Block Sizes

Measure FS performance on workload given different block sizes

BSD: Increase block to 4096 or 8192 bytes

• What is the problem with larger blocks?

• What is the solution?

Block size Space wasted Bandwidth

512 bytes 6.9 % 2.6 %

1024 bytes 11.8 % 3.3 %

2048 bytes 22.4 % 6.4 %

4096 bytes 45.6 % 12.0 %

1 MB 99.0 % 97.2 %



A.Arpaci-DusseauCS 537:Operating Systems FFS.fm.5

Solution to Internal Fragmentation

Fragments: Allow large blocks to be chopped into small ones

• Lower bound on size determined disk sector

• Limit number of fragments per block to 2, 4, or 8

• Keep track of free fragments

Beneficial for small files and ends of files

Algorithm for ensuring fragments only used for end of file

• Only allocate fragments from one block per file

• Coallesce blocks of allocated fragments

• Performance problem if file grows a fragment at a time

Advantages

• Greatly reduces amount of wasted space

• Transfer speeds of larger blocks

A.Arpaci-DusseauCS 537:Operating Systems FFS.fm.6

#2: Unorganized Freelist

Leads to random allocation of sequential files over time

• Initial performance good

...but FS are long-lived entities

What are possible solutions?

Initial Over timeList
List

A.Arpaci-DusseauCS 537:Operating Systems FFS.fm.7

Fixing the Unorganized Freelist

Periodically compact / defragment disk

• Disadvanatage: Disk not accessible during operation

Organize freelist by address

• Disadvantage: Costly to find set of contiguous free blocks

Bitmap of free blocks

• Solution used in BSD

Bitmap: 100100001101101011111

A.Arpaci-DusseauCS 537:Operating Systems FFS.fm.8

#3: Locality

Techniques for keeping related items together

• Keep freespace on disk

Always find free block nearby

90% rule of thumb

• Spread unrelated data far apart

Leaves room for related things to be placed together

What new organization to support locality did BSD introduce?



A.Arpaci-DusseauCS 537:Operating Systems FFS.fm.9

Solution: Cylinder Groups

Divide disk into cylinder groups

• Set of adjacent cylinders

• Little seek time between cylinders in same group

Each cylinder groups contains:

• Superblock

Vary offset within each cylinder group for reliability

• I-nodes

Fixed number per cylinder group

• Bitmap of free blocks

• Usage summary for high-level allocation policy

• Data blocks

A.Arpaci-DusseauCS 537:Operating Systems FFS.fm.10

Goals for Locality

Maintain locality of each file

Maintain locality of files and inodes in a directory

Make room for locality within a directory

• Two requirements

How does BSD achieve each of these goals?

• What heuristics does it use when allocating blocks to disk?

A.Arpaci-DusseauCS 537:Operating Systems FFS.fm.11

Solution to Achieving Locality

Maintain locality of each file

• Allocate runs of blocks within a cylinder group

Maintain locality of files and inodes in a directory

• Keep files in a directory in same cylinder group

Make room for locality within a directory

• Spread out directories among the cylinders groups

Greater than average # of free inodes, smallest # of directories

• Switch to a different cylinder group for large files

After 48KB and every 1MB thereafter

Prevent one file from filling a cylinder group

A.Arpaci-DusseauCS 537:Operating Systems FFS.fm.12

Layout: Global vs. Local

Decompose allocation into two steps

Global: Heuristics for allocate files+directories to cylinder groups

• Pick “optimal” next block for allocation

Local: Handles request for specific block

• If block available, use it

• If not free, check a sequence of alternatives

1) Next rotational block on same cylinder

2) A block within cylinder group

3) Rehash on cylinder group to choose another group

4) Exhaustive search



A.Arpaci-DusseauCS 537:Operating Systems FFS.fm.13

Rotationally Optimal Placment

Skip-sector allocation

• Based on CPU and device speed

• Do not allocate contiguous sectors if CPU not fast enough

• Problems

Cannot achieve full bandwidth from disk

Timing may be optimal for reads but not writes

Disk head

A.Arpaci-DusseauCS 537:Operating Systems FFS.fm.14

BSD Performance Improvements

Achieve 20-40% of disk bandwidth on large files

• 10x improvement over original Unix file system

• Does not change over lifetime of FS

• Especially good considering skip-sector allocation

Could not achieve bettern than 50% of peak

Better small file performance

A.Arpaci-DusseauCS 537:Operating Systems FFS.fm.15

Other Enhancements

Long file names

File locking

• Old: Create separate lock file; Cleanup if process dies

• New: Lock operations for advisory locking

Symbolic links (in addition to hard links)

• Links across file systems

• Links to directories

Atomic rename capability

• Old: rm name; ln name newName; rm newName

Disk quotas


