
1

File System: User Perspective

Questions answered in this lecture:
What are files?  What is file meta-data?
How are directories organized?
What operations can be performed on files?
How are files protected?

UNIVERSITY of WISCONSIN-MADISON
Computer Sciences Department

CS 537
Introduction to Operating Systems

Andrea C. Arpaci-Dusseau
Remzi H. Arpaci-Dusseau

Motivation:
I/O is Important

Applications have two essential components:
• Processing
• Input/Output (I/O)

– What applications have no input? no output?

I/O performance predicts application performance
• Amdahl’s Law: If continually improve only part of application

(e.g., processing), then achieve diminishing returns in speedup
• f: portion of application that is improved (e.g., processing)
• speedupf: speedup of portion of application
• SpeedupApplication = 1/ ((1-f) + (f/speedupf))

– Example:
• f = 1/2, speedupf = 2, speedupapp = 1.33
• f = 1/3, speedupf = 2, speedupapp = 1.20

Role of OS for I/O
Standard library

• Provide abstractions, consistent interface
• Simplify access to hardware devices

Resource coordination
• Provide protection across users/processes
• Provide fair and efficient performance

– Requires understanding of underlying device characteristics

User processes do not have direct access to devices
• Could crash entire system
• Could read/write data without appropriate permissions
• Could hog device unfairly

OS exports higher-level functions
• File system: Provides file and directory abstractions
• File system operations: mkdir, create, read, write

Abstraction: File

User view
• Named collection of bytes

– Untyped or typed
– Examples: text, source, object, executables, application-specific

• Permanently and conveniently available

Operating system view
• Map bytes as collection of blocks on physical non-volatile

storage device
– Magnetic disks, tapes, NVRAM, battery-backed RAM
– Persistent across reboots and power failures



2

File Meta-Data

Meta-data: Additional system information associated with
each file
• Name of file
• Type of file
• Pointer to data blocks on disk
• File size
• Times: Creation, access, modification
• Owner and group id
• Protection bits (read or write)
• Special file? (directory? symbolic link?)

Meta-data is stored on disk
• Conceptually: meta-data can be stored as array on disk

Abstraction: Directories

Organization technique: Map file name to blocks of file
data on disk
• Actually, map file name to file meta-data (which enables one

to find data on disk)

Simplest approach: Single-level directory
• Each file has unique name
• Special part of disk holds directory listing

– Contains <file name, meta-data index> pairs
– How should this data structure be organized???

Two-level directory
• Directory for each user
• Specify file with user name and file name

Directories: Tree-Structured
Directory listing contains <name, index>, but name can be

directory
• Directory is stored and treated like a file
• Special bit set in meta-data for directories

– User programs can read directories
– Only system programs can write directories

• Specify full pathname by separating directories and files with
special characters (e.g., \ or /)

Special directories
• Root: Fixed index for meta-data (e.g., 2)
• This directory: .
• Parent directory: ..

Example: mkdir /a/b/c
• Read meta-data 2, look for “a”: find <“a”, 5>
• Read 5, look for “b”: find <“b”, 9>
• Read 9, verify no “c” exists; allocate c and add “c” to directory

Acyclic-Graph Directories
More general than tree structure

• Add connections across the tree (no cycles)
• Create links from one file (or directory) to another

Hard link: “ln a b” (“a” must exist already)
• Idea: Can use name “a” or “b” to get to same file

data
• Implementation: Multiple directory entries point to

same meta-data
• What happens when you remove a? Does b still

exist?
– How is this feature implemented???

• Unix: Does not create hard links to directories.
Why?



3

Acyclic-Graph Directories

Symbolic (soft) link: “ln -s a b”
• Can use name “a” or “b” to get to same file data, if

“a” exists
• When reference “b”,  lookup soft link pathname
• b: Special file (designated by bit in meta-data)

– Contents of b contain name of “a”
– Optimization: In directory entry for “b”, put soft link

filename “a”

File Operations
Create file with given pathname /a/b/file

• Traverse pathname, allocate meta-data and directory entry

Read from (or write to) offset in file
• Find (or allocate) blocks of file on disk; update meta-data

Delete
• Remove directory entry, free disk space allocated to file

Truncate file (set size to 0, keep other attributes)
• Free disk space allocated to file

Rename file
• Change directory entry

Copy file
• Allocate new directory entry, find space on disk and copy

Change access permissions
• Change permissions in meta-data

Opening Files
Expensive to access files with full pathnames

• On every read/write operation:
– Traverse directory structure
– Check access permissions

Open() file before first access
• User specifies mode: read and/or write
• Search directories for filename and check permissions
• Copy relevant meta-data to open file table in memory
• Return index in open file table to process (file descriptor)
• Process uses file descriptor to read/write to file

Per-process open file table
• Current position in file (offset for reads and writes)
• Open mode

Enables redirection from stdout to particular file


