CS 537: Introduction to Operating Systems
Fall 2015: Midterm Exam #2
SOLUTIONS

This exam is closed book, closed notes. All cell phones must be turned off. No calculators may be
used.

You have two hours to complete this exam.
Write all of your answers on the accu-scan form with a #2 pencil.

These exam questions must be returned at the end of the exam, but we will not grade anything in
this booklet.

Please use the following Special Codes on the accu-scan form:
A: Unofficial discussion section 301
B: Unofficial discussion section 302
C: Unofficial discussion section 303
D: Unofficial discussion section 304

There are 83 multiple choice questions on this exam.
For all questions except question 71, pick the one best answer.

Good luck!



Part 1: True/False from Virtualization [1 point each]

Designate if the statement is True (a) or False (b).

1) Cooperative multi-tasking requires hardware support for a timer interrupt.

False: if cooperative, only switch when process enters OS through other means (e.g., system calls)

2) Two processes reading from the same virtual address will access the same contents.

False: processes have different address spaces, so different contents

3) The convoy effect occurs when longer jobs must wait for shorter jobs.

False: occurs when shorter jobs must wait for longer jobs

4) Stacks are used for procedure call frames, which include local variables and parameters.

True.

5) A RR scheduler may preempt a previously running job.

True.

6) The shorter the time slice, the more a RR scheduler gives similar results to a FIFO scheduler.

False; longer time-slices make it more like FIFO since job has more time to run to completion.

7) The OS provides the illusion to each thread that it has its own address space.

False; each process, not thread, has its own address space.

8) An instruction pointer register is identical to a program counter.

True.

9) With dynamic relocation, hardware dynamically translates an address on every memory access.

True.

10) The OS may manipulate the contents of an MMU.

True.

11) With pure segmentation (and no other support), fetching and executing an instruction that performs an
add of a constant value to a register will involve exactly two memory references.

False, just one memory reference; pure segmentation implies physical address can be computed by just

determing the segment and adding the virtual offset within this segment to the physical base for this segment

(i.e., no memory references needed to calculate physical address); fetching the instruction then takes one

memory reference and the add itself does not perform more memory references.

12) Paging approaches suffer from internal fragmentation, which decreases as the size of a page increases.

False; internal fragmentation increases as the size of the page increases.

13) The number of virtual pages is always identical to the number of physical pages.

False; it doesn’t have to (though the size of each type of page must be identical)

14) A TLB caches translations from virtual page numbers to logical page numbers.

False; caches translations from virtual page numbers to physical (not logical).



15) TLB reach is defined as the number of TLB entries multiplied by the size of a page.

True.

16) A TLB miss is usually slower to handle than a page miss.

False; TLB miss just requires memory references to walk the page tables; a page miss requires fetching that

page from disk.

17) A single page can be shared across two address spaces by having each process use the same page table.

False; to share a page, just share one entry of a page table (using the same page table would share the whole

address space).

18) If the present bit is clear (equals 0) in a PTE needed for a memory access, the running process is likely
to be killed by the OS.

False; present bit = 0 means the page is on disk and not in main memory, so the page just needs to be

fetched.

19) TLBs are more beneficial with multi-level page tables than with linear (single-level) page tables.

True; without a TLB, with multi-level page tables, many memory references are needed to translate each

address.

20) When a page fault occurs, it is more expensive to replace a clean page than a dirty page.

False; more expensive to replace a dirty page since the OS must write out those page contents that do not

match the copy on disk.

Part 2: True/False from Concurrency [3 points each]

Designate if the statement is True (a) or False (b).

21) The clock frequency of CPUs has been increasing exponentially each year since 1985.

False; clock frequency has not been increasing exponentially in more recent years, requiring multiple cores

to achieve the same type of speed-up.

22) Threads that are part of the same process share the same stack pointer.

False; each thread has its own stack and stack pointer so it can have own call stack and local

23) Threads that are part of the same process share the same page table base register.

True; the threads have the same address space.

24) Threads that are part of the same process share the same general-purpose registers.

False; each thread must have own registers (saved and restored when that thread is not executing).

25) Context-switching between threads of the same process requires flushing the TLB or tracking an ASID
in the TLB.

False; since the threads share the same address space, they share the same VPN->PPN mappings.



26) With kernel-level threads, if one thread of a process blocks, all the threads of that process will also be
blocked.

False; with kernel-level threads, the OS is aware of the state of each thread and just that thread will be

blocked.

27) The hardware atomic exchange instruction requires that interrupts are disabled during that instruction.

False; this instruction has nothing to do with disabling interrupts.

28) A lock that performs spin-waiting can provide fairness across threads (i.e., threads receive the lock in
the order they requested the lock).

True; the only question that most people answered incorrectly. Spin-waiting has poor efficiency, but it can

still provide fairness. Think about the implementation we described for ticket locks... uses spin-waiting but

is still fair.

29) A lock implementation should always block instead of spin if it will always be used only on a
uniprocessor.

True; must block to relinquish processor to thread currently holding lock so that thread will relinquish lock.

30) On a multiprocessor, a lock implementation should spin instead of block if it is known that the lock will
be available before the time of required for a context-switch.

True; the amount of wasted time is then less than the amount of time wasted for a context switch.

31) Periodically yielding the processor while spin-waiting reduces the amount of wasted time to be
proportional to the duration of a time-slice.

False; the wasted time is proportional to the cost of a context-switch.

32) A semaphore can be used to provide mutual exclusion.

True; initialize the semaphore to 1.

33) When a thread returns from a call to cond_wait() it can safely assume that it holds the corresponding
mutex.

True; the thread relinquishes the mutex while in cond_wait() but acquires it again before it returns.

34) A thread calling cond_signal() will block until the corresponding mutex is available.

False; cond_signal doesn’t need to do anything with the mutex.

35) With producer/consumer relationships and a finite-sized circular shared buffer, consuming threads
must wait until there is an empty element of the buffer.

False; consumers must wait until there is a full element.

36) The performance of broadcasting to a condition variable decreases as the number of waiting threads
increases.

True; with more waiting threads, more threads are awoken which must be scheduled (all incurring a context-

switch).



37)To implement a thread join() operation with a condition variable, the thread exit() code will call
cond wait().

False; thread exit() calls cond_signal().

38) A goal of a reader/writer lock is to ensure that either multiple readers hold the lock or just one writer
holds the lock.

True.

39) Building a condition variable on top of a semaphore is easier than building a semaphore over condition
variables and locks.

False; this is difficult...

40) As the amount of code a mutex protects increases, the amount of concurrency in the application
increases.

False; with more code within a mutex, concurrency decreases (imagine one big lock around all the code).

41) Ordering problems in multi-threaded applications can be most easily fixed with locks.

False; ordering is fixed with condition variables or semaphores.

42) A wait-free algorithm relies on condition variables instead of locks.

False; wait-free algorithms use atomic hardware instructions.

43) Deadlock can be avoided if threads acquire all potentially needed locks atomically.

True; this breaks the hold-and-wait condition which is necessary for deadlock.

44) Deadlock can be avoided by having only a single lock within a multi-threaded application.

True; this breaks the hold-and-wait condition which is necessary for deadlock.



Part 3. Fork Processes vs. Creating Threads [20 points]

The first set of questions looks at creating new processes with fork(). For the next two questions,
assume the following code is compiled and run on a modern Linux machine. Assume any irrelevant
details have been omitted and that no routines, such as fork(), ever fail.

int a = 0;

int main() {

fork();

at+;

fork();

at+;

if (fork() == 0) {
printf(“Hello!\n");

} else {
printf (“Goodbye!\n");

}

at++;

printf(“a is %d\n”, a);

}

45) How many times will the message “Hello!\n” be displayed?

a) 2

b) 3

c) 4

d) 6

e) None of the above
Answer: 4 2 c¢. You can type this in and run it if you don’t believe. The first call to fork() results in two
processes; each of those two processes then calls fork() which results in a total of four processes; the next
call to fork() results in eight processes, but only the child process (of which there are four) prints “Hello”,

46) What will be the final value of “a” as displayed by the final line of the program?
a) The value for “a” may be printed multiple times in different orders with different
values.
b) 3
c) 4
d) 8
e) None of the above

Answer: 3 2 b. Each process has its own copy of the variable a, with no sharing across processes. Each
process will increment ‘a’three times, resulting in an identical value of ‘a=3’ for all 8 processes.

The next set of questions looks at creating new threads. For the next questions, assume the following
code is compiled and run on a modern Linux machine. Assume any irrelevant details have been
omitted and that no routines, such as pthread_create() or pthread_join(), ever fail.

volatile int balance = 0;

void *mythread(void *arg) {
int result = 0;



result = result + 200;

balance = balance + 200;

printf (“Result is %d\n”, result);
printf (“Balance is %d\n”, balance);
return NULL;

}

int main(int argc, char *argv[])
pthread t pl, p2;
pthread create(&pl, NULL, mythread, “A");
pthread create(&p2, NULL, mythread, “B");
pthread join(pl, NULL);
pthread join(p2, NULL);
printf(“Final Balance is %d\n”, balance);

}
47) How many total threads are part of this process?
a) 1
b) 2
c 3
d) 4

e) None of the above
Answer: 3 =2 c¢. Main thread plus two created threads.
48) When thread p1 prints “Result is %d\n”, what value of result will be printed?
a) Due to race conditions, “result” may have different values on different runs of the program.
b) 0
c) 200
d) 400
e) A constant value, but none of the above
Answer: 200-> c. ‘result’ is a local variable allocated on the stack; each thread has its own private copy
which only it increments, therefore there are no race conditions.
48) When thread p1 prints “Balance is %d\n”, what value of balance will be printed?
a) Due to race conditions, “balance” may have different values on different runs of the
program.
b) 0
c) 200
d) 400
e) A constant value, but none of the above
Mark as answer 84. Answer: a. balance is allocated on the heap and shared between the two threads
that are each accessing it without locks; there is a race condition.
49) When “Final Balance is %d\n” is printed, what value of balance will be printed?
a) Due to race conditions, “balance” may have different values on different runs of the
program.
b) 0
c) 200
d) 400
e) A constant value, but none of the above
Answer: a. balance is allocated on the heap and shared between the two threads that are each accessing
it without locks; there is a race condition.

END of PART 3.
Part 4. Impact of scheduling without locks (assembly code) [21 points]



For the next questions, assume that two threads are running the following code on a uniprocessor
(this is the same looping-race-nolock.s code from homework simulations).

# assumes %bx has loop count in it

.main

.top

mov 2000, %ax # get the value at the address
add $1, %ax # increment it

mov %ax, 2000 # store it back

# see if we're still looping
sub $1, %bx

test $0, %bx

jgt .top

halt

This code is incrementing a variable (e.g., a shared balance) many times in a loop. Assume that the
%bx register begins with the value 3, so that each thread performs the loop 3 times. Assume the code
is loaded at address 1000 and that the memory address 2000 originally contains the value 0. Assume
that the scheduler runs the two threads producing the following order of instructions (the first column
shows the address of the executed instruction). The code continues on the next page.

Answer: We find it useful to track the value of ax, which is separate for each thread, along with addr 2000
which is shared across the two threads. Instructions involving register bx and jumping can be ignored.

Thread 0 Thread 1
1000 mov 2000, %ax Contents of ax = 0
1001 add $1, %ax Contents of ax = 1
—————— Interrupt ------ ————-- Interrupt ------
1000 mov 2000, %ax Contents of ax = 0
—————— Interrupt ------ ————-- Interrupt ------
1002 mov %ax, 2000 50) Contents of addr = 1
—————— Interrupt ------ ————-- Interrupt ------
1001 add $1, %ax Contents of ax = 1
1002 mov %ax, 2000 51) Contents of addr =1
1003 sub $1, %bx
—————— Interrupt ------ ————-- Interrupt ------
1003 sub $1, %bx
—————— Interrupt ------ ————-- Interrupt ------
1004 test $0, %bx
—————— Interrupt ------ ————-- Interrupt ------
1004 test $0, %bx
—————— Interrupt ------ ————-- Interrupt ------
1005 jgt .top
1000 mov 2000, %ax Contents of ax =1
—————— Interrupt ------ ————-- Interrupt ------
1005 jgt .top
1000 mov 2000, %ax Contents of ax =1
1001 add $1, %ax Contents of ax = 2
—————— Interrupt ------ ————-- Interrupt ------
1001 add $1, %ax Contents of ax = 2
1002 mov %ax, 2000 52) Contents of addr = 2
—————— Interrupt ------ ——=——-- Interrupt ------
1002 mov %ax, 2000 53) Contents of addr = 2



—————— Interrupt ------ —-—=---- Interrupt ------
1003 sub $1, %bx
1004 test $0, %bx
—————— Interrupt ------ —-—=-—--- Interrupt ------
1003 sub $1, %bx
1004 test $0, %bx
—————— Interrupt ------ —-—=-—--- Interrupt ------
1005 jgt .top
1000 mov 2000, %ax Contents of ax = 2
1001 add $1, %ax Contents of ax = 3
—————— Interrupt ------ —-—=-—--- Interrupt ------
1005 jgt .top
1000 mov 2000, %ax Contents of ax = 2
—————— Interrupt ------ —-—=-—--- Interrupt ------
1002 mov %ax, 2000 54) Contents of addr = 3
1003 sub $1, %bx
1004 test $0, %bx
—————— Interrupt ------ —-—=-—--- Interrupt ------
1001 add $1, %ax Contents of ax = 3
1002 mov %ax, 2000 55) Contents of addr = 3
1003 sub $1, %bx
—————— Interrupt ------ —-—=-—--- Interrupt ------
1005 jgt .top
—————— Interrupt ------ —-—=-—--- Interrupt ------
1004 test $0, %bx
—————— Interrupt ------ —-—=-—--- Interrupt ------
1006 halt
————— Halt;Switch ----- —-——--- Halt;Switch -----
1005 jgt .top
1006 halt

For each of the lines designated above with a question numbered 50-55, determine the contents of the
memory address 2000 AFTER that assembly instruction executes. Use the following options for
questions 50-55.

a) 1

b) 2

c) 3

d) 4

e) None of the above

56) What would be the expected value for the final contents of address 2000 if there had been no race
conditions between the two threads?

a) 3

b) 4

c) 5

d) 6

e) None of the above

Answer: 6->d. Each of the two threads would add 3 to address 2000 (which started at 0).
End of Part 4.



Part 5. Spin-Locking with Atomic Hardware Instructions [10 points]

Consider the following incomplete implementation of a spin-lock. Examine it carefully because it is
not identical to what was shown in lecture.

typedef struct _ lock t {
int flag;
} lock_t;

void init(lock t *lock) {
lock->flag = abc;
}

void acquire(lock t *lock) {
while(xchg(&lock->flag, xyz) == xyz) ;
// spin-wait (do nothing)

}

void release(lock t *lock) {
lock->flag = 1;
}

57) To what value or values could lock->flag be initialized (shown as abc above) to obtain a correct
implementation?

a) 0

b) 1

c) 2

d) Oor2

e) Oor1l
Answer: 1-2b. Since release() sets lock->flag to 1, this is how the code shows the lock is not currently
held. The lock should be initialized so it is not held, which means 1.
58) To what value or values could lock->flag be compared in acquire() (shown as xyz above) to
obtain a correct implementation?

a) 0

b) 1

c) 2

d) Oor2

e) Oorl
Answer: (any integer but 1)->d. To indicate that the lock is acquired, we can use any value other than
that showing the lock is released (1).

End of Part 5.



Part 6. Impact of scheduling multi-threaded C code

The remainder of the problems on this exam all ask you to step through C code according to a given
schedule of threads. To understand how the scheduler switches between threads, you must
understand the following model.

Assume a uniprocessor.

The scheduler runs each thread in the system such that each line of the given C-language code
executes in one scheduler tick, or interval. For example, if there are two threads in the system, T and
S, we tell you which thread was scheduled in each tick by showing you either a “T” or a “S” to designate
that one line of C-code was scheduled for the corresponding thread; for example, TTTSS means that 3
lines of C code were run from thread T followed by 2 lines from thread S.

Some lines of C code require special rules, as follows.

Assume each test of a while() loop or an if () statement requires one scheduler tick. Assume
jumping to the correct code does not take an additional tick (e.g., jumping either inside or outside the
while loop or back to the while condition does not take an extra tick; jumping to the then or the else
branch of an if statement does not take an extra tick).

Assume function calls whose internals are not shown and that do not require synchronization, such
as qadd(), gremove(), gempty(), and malloc(), require one scheduling tick.

Function calls that may need to wait for another thread to do something (e.g., mutex_lock() and
cond_wait()) may consume an arbitrary number of scheduling ticks and are treated as follow.

For mutex_lock(), assume that the function call to mutex_lock() requires one scheduling interval if the
lock is available. If the lock is not available, assume the call spin-waits until the lock is available (e.g.,
you may see a long instruction stream TTTTTTT that causes no progress for this thread). Once the lock
is available, the next scheduling of the acquiring thread causes that thread to obtain the lock (e.g., after
a thread S releases the lock, the next scheduling of the waiting thread T will complete mutex_lock();
note that T does need to be scheduled for one tick with the lock released for mutex_lock() to
complete).

The rules for cond_wait() and sema_wait() are similar. When a thread calls one of these versions of
wait(), if the work has not yet been done to complete the wait(), then no matter how long the
scheduler runs this thread (e.g., TTTTT), this thread will remain waiting in the wait() routine. After
another thread runs and does the work necessary for the wait() routine to complete, then the next
scheduling of thread T will cause the wait() line to complete; again, note that T does need to be
scheduled for one tick with the work completed for wait() to complete).

If a thread continues to be scheduled after it reaches the end of the shown code, assume it continues
running lines that have no interaction with other threads.



Part 6a. Implementation of thread_join() and thread_exit() with CVs [24 points]

Using the scheduling model that has been described, imagine there is a parent thread, P, starting the
call to thread_join() and a child thread, C, starting the call to thread_exit(). Assume the done variable
has been initialized to 0. Imagine you have the following implementation of thread_join() and
thread_exit():

void thread join() {

Mutex lock (&m) ; // pl
while (done == 0) // p2

Cond wait(&c, &m); // p3
Mutex unlock (&m) ; // p4

}
void thread exit () {

Mutex lock(&m) ; // cl
done = 1; // c2
Cond_signal (&c); // c3
Mutex unlock (&m) ; // c4

}

59) After the instruction stream “P” (i.e., after the scheduler runs one line from the parent), which line
of the parent’s will execute when it is scheduled again?
a) pl (Hint to get you started: this line if the lock is already acquired and P must wait here)
b) p2 (Hint: here if the lock was not previously acquired and thus P continues to this line)
c) p3 (Hint: no idea how this could happen)
d) p4 (Hint: no idea how this could happen)
e) Codebeyond p4  (Hint: no idea how this could happen)
Answer: p2 (b). P will have acquired the lock, which means it will have finished mutex_lock().

60) Assume the scheduler continues on with “C” (the full instruction stream is PC).
Which line will the child execute when it is scheduled again?

a) cl
b) c2
c) c3
d) c4

e) Code beyond c4
Answer: c1 (a). C must wait to acquire the lock since it is currently held by P.

61) Assume the scheduler continues on with PPP (the full instruction stream is PCPPP). Which line
will the parent execute when it is scheduled again?

a) pl

b) p2

c) p3

d) p4

e) Code beyond p4

Answer: p3(c). Since done = 0, P will execute while p2 and p3; it is stuck in p3 until signaled. Note that P
relinquishes the lock while in p3.

62) Assume the scheduler continues on with CCC (the full instruction stream is PCPPPCCC). Which
line will the child execute when it is scheduled again?



a) cl

b) c2
c) c3
d) c4

e) Code beyond c4
Answer: c4 (d). C finishes c1, executes c2, and then c3. The next time C runs, it will execute c4. At this
point, the condition variable has been signaled, but the mutex is still locked.
63) Assume the scheduler continues on with PP (the full instruction stream is PCPPPCCCPP). Which
line will the parent execute when it is scheduled again?

a) pl

b) p2

c) p3

d) p4

e) Code beyond p4
Answer: p3 (c). P cannot return from cond_wait() until it is able to acquire the lock; since the lock is held
by C, P stays in cond_wait().

64) Assume the scheduler continues on with CC (the full instruction stream is PCPPPCCCPPCC). Which
line will the child execute when it is scheduled again?

a) cl
b) c2
c) c3
d) c4

e) Codebeyond c4
Answer: (e). C executes c4 and then code beyond c4.
65) Assume the scheduler continues on with PPP (the full instruction stream is PCPPPCCCPPCCPPP).
Which line will the parent execute when it is scheduled again?

a) pl

b) p2

c) p3

d) p4

e) Code beyond p4
Answer: (e). P finishes p3, then rechecks p2 (the while loop), and then executes p4. Next time, it will
execute code beyond p4.

66) If the above code has a problem, how could it be fixed? Choose one option below.
a) Code does not have a problem
b) Change how the done variable is initialized
c) Remove the mutex_lock() and mutex_unlock() calls
d) Change the while() loop to an if() statement
e) None of the above

Answer: (a) No problems with this code...

End of Part 6a.



Part 6b. Inserting into a linked list [15 points]
Assume the following code for inserting keys into a shared linked list (identical to code in class):
typedef struct @ node t {

int key;

struct _ node_t *next;
} node t;
Typedef struct  list t {

node_t *head;
} list t;
Void List Insert(list t *L, int key) {

node t *new = malloc(sizeof(node t));

new->key = key;

new->next = L->head;

L->head = new;
}
Assume a list L originally contains three nodes with keys 3, 4, and 5. Assume thread T calls
List Insert(L, 2) andthreadScallsList Insert(L, 6). Assume malloc() does not fail
Given the following schedules of C-statements in the list_insert() routines for threads T and S, what
will be the final contents of the list?
67) Schedule: TTTTSSSS

a) 2,6,3,4,5
b) 6,2,3,4,5
0 2,3,4,5
d) 6,3,4,5

e) Unknown results or None of the above
Answer: (b). Each call to List_Insert() runs to completion; key 2 is inserted first at the head of the list,
then 6, which gives the list: 6,2, 3,4, 5
68) Schedule: SSSSTTTT

a) 2,6,3,4,5
b) 6.2.3.45
0 2,3,4,5
d) 6,3,4,5

e) Unknown results or None of the above
Answer: (a). Each call to List_Insert() runs to completion; key 6 is inserted first, then 2, which gives the
list: 2,6,3,4,5

69) Schedule: SSTTTTSS
a) , 5
b) ,5
c)
d)
e) Unknown results or None of the above

Answer: (b) A context switch away from S occurs after new->key has been set to 6; then key 2 is

completely and correctly added to the list; then key 6 is added to the list.

70) Schedule: SSSTTTTS

2,
6,
2,
6,
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a) 2,6,3,4,5

b) 6,2,3,4,5

c) 2,3,4,5

d) 6,3,4,5

e) Unknown results or None of the above



Answer: d. A context switch occurs away from S after new->next = L->head (without key 2); Key 2
is then added to the head of the list. However, when S is resumed, it executes L->head = new; this
causes the list to point to 6 (which points to 3, 4, 5); thus key 2 is lost from the list.

71) If the above code has a race condition, how could it be fixed? Indicate all that apply.

a) Code does not have a race condition

b) Lock

c) Condition variable

d) Semaphore

e) Atomic compare and swap instruction
Official Answer: Need the two instruction assignment of new->next and L->head to be atomic. Code can
be fixed with a lock, a semaphores (which can be used as mutex by initializing to 1), AND with an atomic
compare and swap instruction. Correct answers should have marked all 3, but everyone was given credit
for this question.
End of Part 6b



Part 6¢. Lock implementation with blocked threads [21 points]
Assume you have the following code for acquiring and releasing a lock (this is identical to code shown
in class):
Typedef struct {
bool lock = false;
bool guard = false;
queue t g; // assume managed FIFO
} LockT;

void acquire(LockT *1) {

while (TAS(&l->guard, true)); // al
if (1l->lock) { // a2
gadd(l->q, tid); // a3
setpark(); // a4
l->guard = false; // a5
park(); } // a6
else { 1->lock = true; // ai
l->guard = false;} // a8
}

void release(LockT *1) {
while (TAS(&l->guard, true)); // rl
if (gempty(l->q)) // r2
l1->lock=false; // r3
else unpark(gremove(l->q)); // r4
l->guard = false; // r5

}

Assume the initial state is that the lock is not held. Assume two threads T and S each call acquire() on
the same shared lock.

72) After the instruction stream “T” (i.e., after the scheduler runs one line of acquire() for thread T),
which line of acquire will be executed for T when T is scheduled again?

a) al

b) a2

c) a3

d) a4

e) None of the above
Answer: a2->b. Since l->guard starts as false, statement al is executed once; T will resume with aZ2.
73) Assume the scheduler continues with TT (i.e., the full instruction stream is TTT), which line will T
execute when it is scheduled again?

a) A4

b) A7

c) A8

d) Aline after A8

e) None of the above
Answer: a8->c. First T executes a2. Since I->lock is false, T next executes a7. Next statement will be a8.



74) Assume the scheduler continues with SSS (the full instruction stream is TTTSSS). Which line will
thread S execute when it is scheduled again?

a) Al

b) A4

c) A5

d) A8

e) None of the above
Answer: al->a. Since guard=true, S will keep looping on this first statement.

75) Assume the scheduler continues on with TTT (the full instruction stream is TTTSSSTTT). Which
line will thread T execute when it is scheduled again?

a) A4

b) A7

c) A8

d) Aline after A8

e) None of the above
Answer: d. Executes a8 and continues past a8.

76) Assume the scheduler continues on with SSS (the full instruction stream is TTTSSSTTTSSS).
Which line will thread S execute when it is scheduled again?

a) Al

b) A4

c) A5

d) A8

e) None of the above
Answer: a4->b. The guard=false now, so executes al one more time, then a2. In aZ2 sees that lock=true, so
executes a3. Next time will execute a4.

77) Assume the thread T completes its critical section and then calls release(). If the scheduler runs
TTT starting at release() (the full instruction stream is TTTSSSTTTSSSTTT), which line will thread T
execute when it is scheduled again?

a) R1

b) R2

c) R3

d) R4

e) None of the above
Answer: R1->a. S is still holding the guard, so T will be stuck trying to acquire the guard in the release()
code.

78) What is the purpose of the 1->guard variable? Pick the one best answer.
a) Toindicate whether or not the lock 1 is currently held by a caller of acquire()
b) To indicate whether a thread is currently on the queue waiting to acquire the lock
c) To ensure there is not a race condition between testing and setting of I->lock
d) To ensure there is not a race condition between setpark() and park()
e) To ensure there is not a race condition between park() and unpark()
Answer: c. The guard must be acquired before I->lock can be examined or set.

End of Part 6c¢.



Part 6d. Producer/consumer implementation with locks and semaphores [20 points]

Assume you have the following code for accessing a shared-buffer that contains max elements (for some very
large value of max). Assume multiple producer and multiple consumer threads access these routines
concurrently. Assume the initial state is that the mutex is not held and that all buffers are empty. Assume the
semaphore empty is initialized to 0 and £i11 is initialized to max. Assume numfull is initialized to 0.

void *producer(void *arg) {

Mutex lock(&m); // pl
if (numfull == max) // p2
sema_wait (&empty); // p3
do fill(i); //updates numfull // p4
sema_post (&fill); // p5
Mutex_unlock(&m); // p6
}
void *consumer(void *arg) {
Mutex lock(&m); // cl
if (numfull == 0) // c2
sema wait(&fill); // c3
int tmp = do_get(); // updates numfull // c4
sema_post (&empty) ; // c5
Mutex_unlock(&m); // c6
}

79) After the instruction stream “PPPPP” (i.e., after the scheduler runs 5 lines producer() for a producer thread
P), which line of acquire will be executed for P when P is scheduled again?

a) P1
b) P3
c) P5

d) Some line after P6

e) None of the above
Answer: d. Mutex is not locked, numfull != max, so just runs through all lines: p1, p2, p4, p5, p6. Next time it is
scheduled, it will run a line after P6.

80) Assume the scheduler continues on with CCCCC (i.e., the scheduler runs 5 lines of consumer() for a consumer
thread C and the full instruction stream is PPPPPCCCCC). Which line will C execute when it is scheduled again?

a) cl
b) ¢3
c) c5

d) Some line after c6

e) None of the above
Answer: d. Mutex is not locked, numfull is 1, so just runs through lines: c1, c2, c4, c5, c6. Next instruction will be
after cé.

81) Assume the scheduler starts another consumer with 00O (i.e., the full instruction stream is
PPPPPCCCCCOO0O0). Which line will thread O execute when it is scheduled again?

a) cl
b) c3
c) c4

d) Some line after c6

e) None of the above
Answer: ¢4 -> c. Mutex is not locked, but numfull is 0, so executes c1, c2, c3. Now, we see that the consumer is
incorrectly waiting on a semaphore fill that was initialized to numfull. As a result, the consumer does NOT end up
waiting here and the next time it runs it will execute c4.

82) Assume the scheduler starts another producer with RRR (i.e., the full instruction stream is
PPPPPCCCCCOOORRR). Which line will thread R execute when it is scheduled again?

a) pl

b) p3



c) p5
d) Some line after p6
e) None of the above
Answer: p1->a. Since the mutex is currently held by O, R will be stuck waiting to acquire the lock.

83) If a problem exists in the above code, what would be the easiest solution to fix it?

a) There is no problem with this code

b) Remove the calls to mutex_lock() and mutex_unlock()

c) Correct how the two semaphores were initialized

d) Change the semaphores to condition variables

e) None of the above
Answer: d or e (points given after initial grading). A common answer was to say that the code would work if we
corrected how the semaphores were initialized - but this is actually not enough! Semaphores do NOT release the
mutex when sema_wait() is called; therefore, the system will be in a deadlock if a process calls sema_wait() because
it will hold the mutex and the process that needs to call sema_post() will never be able to grab the lock and run. The

only correct way to fix the code is to use condition variables (which do not require initialization) AND change the
if() loop to a while() loop.

End of Exam! Congratulations!



