
 

 

CS 537: Introduction to Operating Systems 
Fall 2015: Midterm Exam #3 

Thursday, November 19th 7:15-9:15 
 
 
 

Persistence  
 
 
 
 
 
This exam is closed book, closed notes.   
 
All cell phones must be turned off.   
 
No calculators may be used. 
 
You have two hours to complete this exam. 
 
Write all of your answers on the accu-scan form with a #2 pencil.      
 
These exam questions must be returned at the end of the exam, but we will not grade anything in 
this booklet.  
 
Please fill in the accu-scan form with your Last Name, First Name and Student Identification 
Number; remember to fill in the corresponding bubbles as well. 
 
Good luck! 



 

 

This exam has multiple versions.  To make sure you are graded with the correct answer key, 
you must identify this exam version with a Special Code in Column A on your accu-tron 
sheet.  Your special code is:  2.  Be sure to fill in the corresponding bubble as well. 
 
The other version of this exam simply places the True/False questions first. 
 
Disks.  [2 points each] 
Consider a disk with the following characteristics: 
• Number of surfaces: 8 (= 23) 
• Number of tracks / surface: 512 K (= 219) 
• Number of bytes / track: 8 MB (= 223 bytes) 
• Number of sectors / track: 8 K (= 213) 
• On-disk cache: 16 MB (= 224 bytes) 
 
1) How many heads does this disk have? 

a) 1 
b) 2 
c) 4 
d) 8 
e) Not enough information or none of the above 
8 heads: 1 head per surface 

2) What is the size of each sector? 
a) 512 bytes 
b) 1KB 
c) 2KB 
d) 4KB 
e) Not enough information or none of the above 
2^23 bytes / track * track/2^13 sectors = 2^10 bytes /sector 

3) How many bytes per cylinder? 
a) 1 MB 
b) 8 MB 
c) 64 MB 
d) 242 bytes 
e) Not enough information or none of the above 
2^23 bytes / track * 8 tracks / cylinder = 2^26 bytes / cylinder 

4) What is the total capacity of this disk?   
a) 242 bytes 
b) 245 bytes 
c) 235 bytes 
d) 238 bytes 
e) Not enough information or none of the above 
2^26 bytes / cylinder * 2^19 cylinders = 2^45 bytes 

Assume	
  the	
  disk	
  head	
  is	
  at	
  cylinder	
  18	
  and	
  moving	
  towards	
  higher	
  cylinders.	
  	
  Assume a stream of 
requests arrives for the following cylinders: 	
  5, 20, 1, 60, 3, 8, 90, 2, 20, 40, 6, 70.	
  	
  	
  	
  
5) With	
  a	
  FCFS	
  scheduling	
  policy,	
  what	
  is	
  the	
  total	
  seek	
  distance	
  to	
  service	
  all	
  the	
  requests?	
  

a) 519	
  
b) 521	
  
c) 534	
  
d) 586	
  
e) Not	
  enough	
  information	
  or	
  none	
  of	
  the	
  above	
  



 

 

Starts	
  at	
  cylinder	
  18;	
  to	
  go	
  from	
  18	
  to	
  5	
  to	
  20	
  to	
  1	
  …	
  to	
  70	
  =	
  13	
  +	
  15	
  +	
  19	
  +	
  …	
  +	
  64	
  =	
  474.	
  	
  	
  
	
  

6) With	
  a	
  SSTF	
  scheduling	
  policy,	
  what	
  is	
  the	
  total	
  seek	
  distance?	
  
a) 108	
  
b) 110	
  
c) 119	
  
d) 150	
  
e) Not	
  enough	
  information	
  or	
  none	
  of	
  the	
  above	
  

Schedule:	
  18	
  to	
  20,	
  20,	
  8,	
  6,	
  5,	
  3,	
  2,	
  1,	
  40,	
  60,	
  70,	
  90	
  ! 	
  2	
  +	
  19	
  +	
  89	
  =	
  110	
  
7) With	
  a	
  SCAN	
  scheduling	
  policy	
  (bi-­‐directional	
  scanning),	
  what	
  is	
  the	
  total	
  seek	
  distance?	
  

a) 159	
  
b) 161	
  
c) 166	
  
d) 168	
  
e) Not	
  enough	
  information	
  or	
  none	
  of	
  the	
  above	
  

Schedule:	
  18	
  to	
  90	
  (servicing	
  requests	
  between	
  18	
  and	
  90)	
  and	
  back	
  down	
  to	
  1	
  (servicing	
  requests	
  
between	
  18	
  and	
  1)	
  ! 	
  72	
  +	
  89	
  +	
  161	
  
8) With	
  a	
  C-­SCAN	
  scheduling	
  policy	
  (uni-­‐directional	
  scanning),	
  what	
  is	
  the	
  total	
  seek	
  distance?	
  

a) 159	
  
b) 161	
  
c) 166	
  
d) 168	
  
e) Not	
  enough	
  information	
  or	
  none	
  of	
  the	
  above	
  

Schedule:	
  18	
  to	
  90	
  (servicing	
  requests)	
  then	
  down	
  to	
  1	
  (but	
  not	
  servicing	
  requests	
  here),	
  then	
  
back	
  to	
  8	
  ! 	
  72	
  +	
  89	
  +	
  7	
  =	
  168	
  

	
  
RAID Mapping [3 points each] 
The	
  next	
  questions	
  ask	
  you	
  to	
  translate	
  logical	
  read	
  and	
  write	
  operations	
  performed	
  on	
  top	
  of	
  a	
  RAID	
  
system	
  to	
  the	
  physical	
  read	
  and	
  write	
  operations	
  that	
  will	
  be	
  required	
  to	
  the	
  underlying	
  disks.	
  
Specifically,	
  for	
  each	
  RAID	
  configuration,	
  translate	
  the	
  logical	
  requests	
  to	
  the	
  physical	
  operations	
  
performed	
  on	
  the	
  correct	
  disk	
  number	
  and	
  physical	
  block	
  address	
  (offset).	
  	
  In	
  all	
  cases	
  assume	
  a	
  block	
  	
  
and	
  chunk	
  size	
  of	
  4	
  KB.	
  	
  These	
  questions	
  are	
  all	
  similar	
  to	
  those	
  available	
  from	
  the	
  homework	
  
simulations.	
  
9) RAID	
  Level:	
  0;	
  Number	
  of	
  Disks:	
  8;	
  Random	
  Read	
  from	
  logical	
  block	
  number	
  58	
  

a) Read	
  from	
  disk	
  2,	
  offset	
  2	
  
b) Read	
  from	
  disk	
  2,	
  offset	
  7	
  
c) Read	
  from	
  disk	
  7,	
  offset	
  2	
  
d) Read	
  from	
  disk	
  7,	
  offset	
  7	
  
e) None	
  of	
  the	
  above	
  
RAID-­0	
  is	
  simple	
  striping;	
  
58	
  %	
  8	
  (number	
  of	
  disks)	
  =	
  2	
  ! 	
  disk	
  2	
  
58	
  /	
  8	
  (integer	
  division)	
  =	
  7	
  ! 	
  block	
  offset	
  7	
  
	
  

10) RAID	
  Level:	
  1;	
  Disks:	
  8;	
  Random	
  Write	
  to	
  logical	
  block	
  29	
  
a) Write	
  to	
  disk	
  1	
  and	
  disk	
  5	
  at	
  offset	
  7	
  
b) Write	
  to	
  disk	
  2	
  and	
  disk	
  3	
  at	
  offset	
  7	
  
c) Write	
  to	
  disk	
  5	
  at	
  offset	
  3	
  
d) Write	
  to	
  disk	
  3	
  at	
  offset	
  5	
  
e) None	
  of	
  the	
  above	
  	
  
RAID-­1	
  is	
  mirroring;	
  with	
  8	
  disks,	
  it	
  is	
  like	
  having	
  4	
  mirrored	
  pairs	
  



 

 

29	
  %	
  4	
  =	
  1	
  ! 	
  mirrored	
  pair	
  number	
  1,	
  which	
  are	
  disks	
  2,	
  3	
  
29	
  /	
  4	
  =	
  7	
  ! 	
  offset	
  7	
  

11) RAID	
  Level:	
  4;	
  Disks:	
  4;	
  Random	
  Write	
  to	
  logical	
  block	
  50	
  	
  
a) Write	
  to	
  disk	
  2,	
  offset	
  12	
  
b) Write	
  to	
  disk	
  2,	
  offset	
  16	
  
c) Read	
  from	
  disk	
  2,	
  offset	
  16;	
  Write	
  to	
  disk	
  2,	
  offset	
  16.	
  
d) Read	
  from	
  disk	
  2	
  and	
  3,	
  offset	
  16;	
  Write	
  to	
  disk	
  2	
  and	
  3,	
  offset	
  16.	
  
e) None	
  of	
  the	
  above	
  
Since	
  this	
  is	
  a	
  random	
  write,	
  the	
  best	
  approach	
  is	
  to	
  read	
  the	
  old	
  data	
  and	
  the	
  old	
  parity	
  
and	
  then	
  flip	
  the	
  parity	
  for	
  every	
  bit	
  that	
  is	
  changed	
  in	
  the	
  new	
  data.	
  
With	
  RAID-­4,	
  disks	
  0,	
  1,	
  2	
  are	
  used	
  for	
  data;	
  disk	
  3	
  for	
  parity.	
  
50	
  /	
  3	
  (number	
  of	
  data	
  disks)	
  =	
  16	
  ! 	
  offset	
  16	
  
50	
  %	
  3	
  =	
  2	
  ! 	
  disk	
  2	
  for	
  data	
  	
  

12) RAID	
  Level:	
  5	
  (Left	
  Symmetric);	
  	
  Disks:	
  4;	
  Random	
  Read	
  from	
  logical	
  block	
  10	
  	
  
a) Read	
  from	
  disk	
  0,	
  offset	
  3	
  
b) Read	
  from	
  disk	
  2,	
  offset	
  2	
  	
  
c) Read	
  from	
  disk	
  2,	
  offset	
  3	
  
d) Read	
  from	
  disk	
  3,	
  offset	
  2	
  
e) None	
  of	
  the	
  above	
  
The	
  pattern	
  for	
  left-­‐symmetric	
  is:	
  
disk	
  0	
   disk	
  1	
   disk	
  2	
   disk	
  3	
  
0	
   1	
   2	
   P	
  
4	
   5	
   P	
   3	
  
8	
   P	
   6	
   7	
  
P	
   9	
   10	
   11	
  
	
  

13) RAID	
  Level:	
  5	
  (LS);	
  Disks:	
  4;	
  Sequential	
  Write	
  to	
  logical	
  blocks	
  15,	
  16,	
  and	
  17.	
  
a) Write	
  to	
  disks	
  0,	
  1,	
  and	
  3	
  at	
  offset	
  5	
  
b) Write	
  to	
  disks	
  0,	
  1,	
  2,	
  and	
  3	
  at	
  offset	
  5	
  
c) Read	
  and	
  write	
  to	
  disks	
  0,	
  1,	
  and	
  3	
  at	
  offset	
  5	
  
d) Read	
  and	
  write	
  to	
  disks	
  0,	
  1,	
  2,	
  and	
  3	
  at	
  offset	
  5	
  
e) None	
  of	
  the	
  above	
  
Continuing	
  into	
  the	
  next	
  group…	
  
disk	
  0	
   disk	
  1	
   disk	
  2	
   disk	
  3	
  
12	
   13	
   14	
   P	
  
16	
   17	
   P	
   15	
  
Since	
  blocks	
  15,	
  16,	
  and	
  17	
  are	
  part	
  of	
  the	
  same	
  stripe,	
  the	
  parity	
  block	
  can	
  be	
  calculated	
  
directly	
  from	
  those	
  data	
  blocks	
  without	
  needing	
  to	
  read	
  any	
  old	
  data;	
  the	
  data	
  blocks	
  and	
  
the	
  parity	
  block	
  for	
  that	
  stripe	
  are	
  simply	
  written	
  to.	
  	
  	
  



 

 

Basic File System Operations and Data Structures [3 points each] 
These questions ask you to understand how different file system operations lead to different file system data 
structures being modified on disk.  You do not need to consider journaling or crash consistency in these 
questions.  This part is based on the available homework simulations. 
 
This file system supports 7 operations: 
- mkdir()  - creates a new directory 
- creat()  - creates a new (empty) file 
- open(), write(), close() - appends a block to a file 
- link()    - creates a hard link to a file 
- unlink()  - unlinks a file (removing it if linkcnt==0) 
 
The state of the file system is indicated by the contents of four different data structures: 
inode bitmap  - indicates which inodes are allocated (not shown, because not needed for questions) 
inodes        - table of inodes and their contents 
data bitmap   - indicates which data blocks are allocated (not shown) 
data         - indicates contents of data blocks 
 
The inodes each have three fields: the first field indicates the type of file (f for a regular file, d for a 
directory); the second indicates which data block belongs to a file (here, files can only be empty, which have 
the address of the data block set to -1, or one block in size, which would have a non-negative address); the 
third shows the reference count for the file or directory. For example, the following inode is a regular file, 
which is empty (address field set to -1), and has just one link in the file system:  [f a:-1 r:1].  If the same file 
had a block allocated to it (say block 10), it would be shown as follows: [f a:10 r:1].  If someone then created 
a hard link to this inode, it would then become [f a:10 r:2]. 
 
Data blocks can either retain user data or directory data. If filled with directory data, each entry within the 
block is of the form (name, inumber), where "name" is the name of the file or directory, and "inumber" is the 
inode number of the file. Thus, an empty root directory looks like this, assuming the root inode is 0:  [(.,0) 
(..,0)].  If we add a single file "f" to the root directory, which has been allocated inode number 1, the root 
directory contents would then become:   [(.,0) (..,0) (f,1)] 
 
If a data block contains user data, it is shown as just a single character within the block, e.g., "h". If it is 
empty and unallocated, just a pair of empty brackets ([]) are shown. 
 
Empty inodes and empty data blocks may not all be shown.   
 
An entire file system is thus depicted as follows: 
inode bitmap 11110000 
inodes       [d a:0 r:6] [f a:1 r:1] [f a:-1 r:1] [d a:2 r:2] [] ... 
data bitmap  11100000 
data         [(.,0) (..,0) (y,1) (z,2) (f,3)] [u] [(.,3) (..,0)] [] ... 
 
This file system has eight inodes and eight data blocks. The root directory contains three entries (other than 
"."  and ".."), to "y", "z", and "f". By looking up inode 1, we can see that "y" is a regular file (type f), with a 
single data block allocated to it (address 1). In that data block 1 are the contents of the file "y": namely, "u".  
We can also see that "z" is an empty regular file (address field set to -1), and that "f" (inode number 3) is a 
directory, also empty. You can also see from the bitmaps that the first four inode bitmap entries are marked 
as allocated, as well as the first three data bitmap entries. 
 



 

 

Assume the initial state of the file system is as follows: 
inodes   [d a:0 r:2] [] [] [] [] []  
data     [(.,0) (..,0)] [] [] []  
If the file system transitions into each of the following states, what operation or operations must have been 
performed?  The state of the file system is cumulative across questions.   
 
14) File System State: 
inodes   [d a:0 r:3] [d a:1 r:2] [] [] [] []  
data     [(.,0) (..,0) (c,1)] [(.,1) (..,0)] [] []  

a) mkdir(“/c”); 
b) creat(“/c”); 
c) link(“/”, “/c”); 
d) mkdir(“/c/d”); 
e) None of the above 

An entry for “/c” exists in the top directory and its inode indicates that it is a directory and 
not a file. 
15) File System State: 
inodes   [d a:0 r:3] [d a:1 r:3] [f a:-1 r:1] [] [] []   
data     [(.,0) (..,0) (c,1)] [(.,1) (..,0) (q,2)] [] []  

a) mkdir(“/c/q”); 
b) create(“/c/q”); 
c) mkdir(“/q”); 
d) create(“/q”); 
e) None of the above 

An entry for “q” exists in the data for “/c” and q’s inode indicates that it is a file. 
16) File System State after TWO operations: 
inodes   [d a:0 r:4] [d a:1 r:4] [f a:-1 r:2] [f a:-1 r:1] [] []  
data     [(.,0) (..,0) (c,1) (r,2)] [(.,1) (..,0) (q,2) (j,3)] [] []  

a) creat("/c/j"); link("/c/q", "/r"); 
b) creat("/c/j"); creat("/r"); 
c) creat(“/r”); link (“/c/q”, “/c/j”); 
d) mkdir(“/j”); link("/c/q", "/r"); 
e) None of the above 

An entry for “j” exists in the directory “/c”; j’s inode (3) indicates that it is a file.  An entry 
exists for “r” within the root directory; it is pointing to inode 2 which is also pointed to by 
“/c/q”.   
17) File System State after TWO operations: 
inodes   [d a:0 r:5] [d a:1 r:4] [f a:2 r:2] [f a:-1 r:1] [f a:-1 r:1] 
data     [(.,0) (..,0) (c,1) (r,2) (g,4)] [(.,1) (..,0) (q,2) (j,3)] [v] 
 

a) creat("/g");  
fd=open("/c/q", O_WRONLY|O_APPEND); write(fd, buf, BLOCKSIZE); close(fd); 

b) creat("/c/g");  
fd=open("/c/q", O_WRONLY|O_APPEND); write(fd, buf, BLOCKSIZE); close(fd); 

c) creat("/c/g");  
fd=open("/c/g", O_WRONLY|O_APPEND); write(fd, buf, BLOCKSIZE); close(fd); 

d) creat(“/g”); creat(“c/q”); 
e) None of the above.  

A new entry “g” exists in “/”; g’s inode indicates it is a file.  There is now data associated 
with inode 2, which is pointed to by “/c/q”.   



 

 

 
Links [2 points each] 
Imagine the following commands are run on an FFS-like file system that supports hard and soft links.   

echo "file" > file 
ln file file2 
echo "file2" >> file2 
mv file file3 
echo "file3" >> file3 

18) What output will you see if you run cat file2( assume nothing wrong with whitespace or carriage 
returns)? 

a) file2\n 
b) file\n file2\n 
c) file\n file2\n file3\n 
d) file2: No such file or directory 
e) None of the above 

Imagine “file” points to a newly allocated inode, number I.  Since a hard link is used, “file2” will refer 
to this same inode.  Changing the name “file” to “file3” in the directory does nothing to the actual 
contents of inode I.  It does not matter which name is used to refer to inode I. 
19) What output will you see if you run cat file3 (assume nothing wrong with whitespace or carriage 

returns)? 
a) file3\n 
b) file\n file3\n 
c) file\n file2\n file3\n 
d) file3: No such file or directory 
e) None of the above 

Imagine the following commands are run instead on an FFS-like file system: 
       echo "bar" > bar 
   ln -s bar bar2 
   echo "bar2" >> bar2 
   mv bar bar3 
   echo "bar3" >> bar3 
20) What output will you see  (assume nothing wrong with whitespace or carriage returns) if you run cat 

bar2 ? 
a) bar2\n 
b) bar\n bar2\n 
c) bar\n bar2\n bar3\n 
d) bar2: No such file or directory 
e) None of the above 

Since bar2 is only a soft (or symbolic) link, bar2 actually points to the pathname “bar” (and not directly to 
the same inode).  As a result, if bar is deleted or renamed, bar2 will not point to anything valid. 
21) What output will you see (assume nothing wrong with whitespace or carriage returns) if you run cat 

bar3 ? 
a) bar3\n 
b) bar\n bar3\n 
c) bar\n bar2\n bar3\n 
d) bar3: No such file or directory 
e) None of the above 

When the command “echo bar2 >> bar2” was executed, bar2 pointed correctly to bar. 



 

 

Crash	
  Consistency	
  [2	
  points	
  each] 
Imagine you have an FFS-like file system that is creating a new empty file in an existing directory and must 
update 4 blocks: the directory inode, the directory data block, the file inode, and the inode bitmap.  Assume 
the directory inode and the file inode are in different on-disk blocks.   Assume this initial system does not 
perform any journaling and FSCK is not run.  What happens if a crash occurs after only updating the 
following block(s)? 
 
22) Bitmap 

a) No inconsistency (it simply appears that the operation was not performed) 
b) Data/inode leak  
c) Multiple file paths may point to same inode 
d) Point to garbage 
e) Multiple problems listed above  

The bitmap shows that this inode has been used, but no structure is actually pointing to this inode; 
therefore, this inode will be lost for any useful purpose (much like a memory leak).  Imagine what 
happens if the user repeatedly retries this file create operation and the file system repeatedly crashes after 
only the bitmap has been written persistently to disk; each time the file system reboots and tries again, it 
will allocate another inode by marking the bitmap until all the inodes appear to be used up. 
 
23) File inode 

a) No inconsistency (it simply appears that the operation was not performed) 
b) Data/inode leak  
c) Multiple file paths may point to same inode 
d) Point to garbage 
e) Multiple problems listed above  

If only the file inode is written, then no directory points to this new inode and the bitmap does not show 
this inode has been written.  The fact that this inode has been written has no effect or impact on any part 
of the file system.  Imagine what happens if the user repeatedly retries this file create operation and only 
writes out the file inode; each time, this same inode or a different inode may be written to, and the work is 
simply lost without any other consequences.   
 
24) Directory inode and Directory data 

a) No inconsistency (it simply appears that the operation was not performed) 
b) Data/inode leak  
c) Multiple file paths may point to same inode 
d) Point to garbage 
e) Multiple problems listed above  

In this case, the directory will point to an inode, but the inode will contain old contents (problem d: 
garbage); furthermore, since the bitmap is not marked, this same inode may be allocated to other files, in 
which case there will be multiple file paths that incorrectly point to this inode (problem c).  Imagine what 
happens if the user tries to repeat this operation; the directory entry will exist (so it will not attempt to 
create the file again) but the inode may be nonsensical.  
 
25) Bitmap and File inode 

a) No inconsistency (it simply appears that the operation was not performed) 
b) Data/inode leak  
c) Multiple file paths may point to same inode 
d) Point to garbage 
e) Multiple problems listed above  

In this case, no directory entry points to the file inode.   Therefore, if the file create operation is retried, a 
new inode will be allocated leading to an inode leak (identical to question 22).  



 

 

26) Bitmap and Directory inode and Directory Data 
a) No inconsistency (it simply appears that the operation was not performed) 
b) Data/inode leak  
c) Multiple file paths may point to same inode 
d) Point to garbage 
e) Multiple problems listed above  

The directory entry points to a garbage inode; if the file create operation is repeated, the directory entry 
will already exist and so it will not allocate another inode.  Because the bitmap shows this inode is already 
allocated, it will not be allocated to another file. 

 
27) File inode and Directory inode and Directory Data 

a) No inconsistency (it simply appears that the operation was not performed) 
b) Data/inode leak  
c) Multiple file paths may point to same inode 
d) Point to garbage 
e) Multiple problems listed above  

The directory entry points to a correctly initialized inode, but the bitmap does not show that this inode has 
been allocated; therefore, this inode may be allocated to another file at some point in the future. 
 



 

 

Assume we’ve added a basic implementation of full-data journaling to our FFS-like file system and perform 
the same file create operation as above.  Assume a transaction header block and a transaction commit 
block.   Assume each block is written synchronously (i.e., a barrier is performed after every write and blocks 
are pushed out of the disk cache). If the system crashes after the following number of blocks have been 
synchronously written to disk, what will happen after the system reboots? (If the number of disk writes 
exceeds those needed, assume they are unrelated.)  
 
1) 1 disk write (hint: just the transaction header block is written to disk) 

a) No transactions replayed during recovery; file system in old state 
b) No transactions replayed during recovery; file system in new state 
c) Transaction replayed during recovery; file system in old state 
d) Transaction replayed during recovery; file system in new state 
e) Transaction replayed during recovery; file system in unknown state 

If only the transaction header is written, the transaction will not be replayed during recovery and the file 
system will be in the old state (i.e., the four blocks needed to record a file create operation, will not have 
been updated in their fixed in-place locations). 

 
2)  4 disk writes (hint: transaction header, plus 3 blocks to journal) 

a) No transactions replayed during recovery; file system in old state 
b) No transactions replayed during recovery; file system in new state 
c) Transaction replayed during recovery; file system in old state 
d) Transaction replayed during recovery; file system in new state 
e) Transaction replayed during recovery; file system in unknown state 

Since the transaction commit block is not written, the transaction will not be replayed during recovery and 
the file system will be in the old state (i.e., the four blocks needed to record a file create operation, will not 
have been updated in their fixed in-place locations). 

 
3) 5 disk writes (hint: transaction header, plus 3 blocks to journal, plus ???) 

a) No transactions replayed during recovery; file system in old state 
b) No transactions replayed during recovery; file system in new state 
c) Transaction replayed during recovery; file system in old state 
d) Transaction replayed during recovery; file system in new state 
e) Transaction replayed during recovery; file system in unknown state 

The 5 disk writes will be to the transaction header plus 4 blocks for the journal transaction (inode bitmap, 
file inode, dir inode, dir data).  Since the transaction commit block is not written, the transaction will not 
be replayed during recovery and the file system will be in the old state (i.e., the four blocks needed to 
record a file create operation, will not have been updated in their fixed in-place locations). 
 
4) 6 disk writes 

a) No transactions replayed during recovery; file system in old state 
b) No transactions replayed during recovery; file system in new state 
c) Transaction replayed during recovery; file system in old state 
d) Transaction replayed during recovery; file system in new state 
e) Transaction replayed during recovery; file system in unknown state 

The 6 disk writes now include the transaction commit block.  Since the entire transaction is valid, it will be 
replayed during recovery and the 4 in-place blocks will all be correctly and atomically updated.   
5) 8 disk writes 

a) No transactions replayed during recovery; file system in old state 
b) No transactions replayed during recovery; file system in new state 
c) Transaction replayed during recovery; file system in old state 
d) Transaction replayed during recovery; file system in new state 



 

 

e) Transaction replayed during recovery; file system in unknown state 
The 8 disk writes include the transaction commit block plus two updates to the in-place blocks.   Since the 
entire transaction is valid, it will be replayed during recovery and the 4 in-place blocks will all be correctly 
and atomically updated.   

 
6) 10 disk writes 

a) No transactions replayed during recovery; file system in old state 
b) No transactions replayed during recovery; file system in new state 
c) Transaction replayed during recovery; file system in old state 
d) Transaction replayed during recovery; file system in new state 
e) Transaction replayed during recovery; file system in unknown state 

The 10 disk writes include the transaction commit block plus four updates to the in-place blocks.   Since 
the entire transaction is valid, it will be replayed during recovery and the 4 in-place blocks will all be 
written to a second time (but this is fine, just some duplicate work).     

 
7) 11 disk writes 

a) No transactions replayed during recovery; file system in old state 
b) No transactions replayed during recovery; file system in new state 
c) Transaction replayed during recovery; file system in old state 
d) Transaction replayed during recovery; file system in new state 
e) Transaction replayed during recovery; file system in unknown state 

The 11th disk write resets the transaction commit block back to zero, indicating that the checkpoint to the 
in-place blocks completed.  Therefore, during recovery, this transaction will not be replayed. 
 
True/False about Virtualization [1 point each] 
Designate if the statement is True (a) or False (b). 
8) Cooperative multi-tasking requires hardware support for a timer interrupt. 

False; cooperative assumes the running process will voluntarily relinquish the CPU. 
 

9) A RR scheduler may preempt a previously running job. 

True. 

10) A RR scheduler delivers better average turn-around time then FCFS when the length of the jobs is nearly 

identical. 

False; if the job lengths are nearly identical, then with RR the jobs will finish at nearly the same time as 

one another, which gives them all very poor turn-around time. 

11) With a single linear page table (and no other support), fetching and executing an instruction that 

performs an add of a constant value to a register will involve exactly two memory references. 

True; single linear page table implies one extra lookup per address translation; fetching the instruction 

requires one address translation.   

12) Paging approaches suffer from external fragmentation, which grows as the size of a page grows. 

False; paging has fixed-sized pages and thus suffers from internal fragmentation. 

13) A TLB caches translations from physical page numbers to virtual page numbers. 

False; TLB caches translations from virtual page numbers to physical page numbers. 

14) TLB reach is defined as the number of TLB entries multiplied by the size of a page. 



 

 

True; 

15) A TLB miss is usually faster to handle than a page miss. 

True; missing in the TLB just requires accessing RAM to walk the page tables; handling a page miss 

requires fetching a page from disk (milliseconds). 

16) A single page can be shared across two address spaces by having different entries in two different page 

tables point to the same physical page. 

True; two different virtual pages in two different address spaces can thus point to the same PPN.  

17) If the present bit is clear (equals 0) in a PTE needed for a memory access, the running process is likely 

to be killed by the OS.  

False; present bit is 0 just means the page is out on disk and needs to be fetched. 

 
True/False about Concurrency [2 points each] 
Designate if the statement is True (a) or False (b). 
18) The clock frequency of CPUs has been increasing exponentially each year since 1985. 

False; in recent years, the improvement is no longer exponential, which is why we need concurrency to 

see performance improvements. 

19) Context-switching between threads of the same process requires flushing the TLB or tracking an ASID 

in the TLB. 

False; threads are part of the same address space so they have the same address translations as one 

another.   

20) The hardware atomic exchange instruction works only on uniprocessor systems.  

False; this would be a rather useless instruction for modern systems! 

21) A lock that performs spin-waiting cannot provide fairness across threads (i.e., threads receive the lock in 

the order they requested the lock). 

False; the famous ticket lock provides fairness and can spin-wait (it just isn’t efficient). 

22) Periodically yielding the processor while spin waiting reduces the amount of wasted time to be 

proportional to the duration of a context-switch. 

True; when this process yields because it can’t acquire the lock, the scheduler will pick another process 

to run (that hopefully has useful work to do), at the cost of a context-switch. 

23) A condition variable can be used to provide mutual exclusion. 

False; need locks (or monitors) or semaphores for mutual exclusion. 

24) When a thread returns from a call to cond_wait() it can safely assume that it holds the corresponding 

mutex.  

True; calling cond_wait relinquishes the associated mutex, but then reacquires it before returning. 

25) A call to cond_signal() will always wake up at least one thread. 



 

 

False; it only wakes up a thread if there is a waiting thread (otherwise the signal/wakeup is lost). 

26) Building a condition variable on top of a semaphore is easier than building a semaphore over condition 

variables and locks. 

False; building condition variables is tough due to the possibility of missing the signal just as a process 

is being put to sleep. 

27) To implement thread_join() with a semaphore, the semaphore value should be initialized to 0. 

True; if it is 0, then the exiting thread must call sema_post() to increment the semaphore to 1 so that the 

call to sema_wait() within thread_join() will proceed.   

28) A wait-free algorithm relies on condition variables instead of locks. 

False, they use atomic hardware instructions.    

29) After a process calls fork(), the parent and child processes will share the same address space. 

False; the child starts off with a copy of the parent’s address space, but it is a copy that will change over 

time.  

30) A buggy thread may be able to overwrite variables belonging to another thread of the same process. 

True; because the threads are in the same address space, it is possible for one thread to read and/or 

write another thread’s variables (even those allocated on the stack).  

31) On a context-switch across threads of the same process, the general-purpose registers must be saved 

and restored. 

True; all the registers are virtualized so each thread appears to have its own set of registers. 

32) A call to sema_wait() releases an associated mutex lock and reacquires the lock before returning. 

False; semaphores do not have associated locks. 

 
True/False about Persistence [3 points each] 
Designate if the statement is True (a) or False (b). 
33) When interacting with a device, it is usually better to use PIO than DMA. 

False; direct memory access (DMA) is usually much better than programmed I/O (PIO) since the CPU does 

not need to be involved with every word transferred to the device. 

34) Device driver code is software that executes on the microcontroller of a peripheral device. 

False; device driver code is typically part of the OS and runs on the main CPU, though its protocols may be 

specific to each peripheral device.  

35) With a 15000 RPM disk, the expected rotation time for a random access is 4 ms. 

False; 4ms is the full rotation time; the expected rotation time for a random access will be ½ of this full 

amount.  60 sec / 1 min * 1 min / 15000 revs * 1000 ms / 1 sec = 4 ms per full rotation. 

36) Transfer time for disk sectors is significantly longer for random accesses than for sequential accesses. 



 

 

False.  IO time = seek cost + rotation cost + transfer time; transfer time is constant and corresponds to the 

maximum bandwidth from the device. 

37) Track skew results from the fact that the outer tracks of a disk contain more sectors than the inner 

tracks. 

False; track skew isn’t caused by disk zones; track skew accounts for the fact that seeking to a new track will 

incur some rotation as well.  

38) SPTF scheduling over a set of N requests will order the requests resulting in the minimum possible total 

positioning time.  

False; SPTF is greedy and just picks the NEXT request to minimize the NEXT positioning time; a greedy 

schedule does not guarantee the minimum possible total positioning time across the SET of N requests.   

39) SPTF scheduling is easier to implement inside of a disk than within the OS. 

True; the disk knows the details of its geometry (e.g., exactly on which track each sector is located) as well 

as the current head position; therefore, it can more accurately predict positioning time, whereas the OS must 

guess or approximate some of this information. 

40) A disadvantage of SPTF scheduling is that some requests can starve. 

True; a request with a long positioning time may not be scheduled. 

41) A disadvantage of the SCAN and C-SCAN scheduling algorithms are that they ignore the influence of 

rotation time on positioning cost. 

True; SCAN and C-SCAN just schedule based on the track (or cylinder) number.   

42) A non-work conserving scheduler may not schedule available requests even when the disk is idle. 

True; this is the definition. 

43) RAID-0 is also referred to as striping. 

True; this is the definition. 

44) With RAID-1, the steady-state throughput of random reads and random writes are identical. 

False; RAID-1 or mirroring has two copies of each block; since on a write, both copies must be updated, the 

throughput of writes is ½ that of reads. 

45) RAID-4 has better capacity than RAID-1 and better reliability than RAID-0. 

True; RAID-4 has just one parity disk for N data disks, whereas RAID-1 has an extra mirror for every data 

disk; RAID-0 cannot withstand any disk failures, whereas RAID-4 can handle any single disk failing.   

46) One disadvantage of RAID-4 is that it cannot continue operating if the single parity disk fails. 

False; RAID-4 can continue operating (and can reconstruct all necessary data) if any disk fails, whether it i 

a data disk or a parity disk. 

47) The capacity of  RAID-4 and RAID-5 systems are identical. 

True; both systems have 1 parity block per stripe of data. 



 

 

48) The steady-state throughput for random writes with RAID-4 is half the steady-state throughput of 

random writes on a single disk.   

True; random write to RAID-4 involves both reading and writing to the single parity disk (since double 

the amount of work, this results in half the effective throughput). 

49) For random read operations, RAID-1 delivers better throughput than RAID-5.  

False; they each deliver the same performance since each disk in the system can effectively perform 

random reads.   

50) Given the metrics of capacity, reliability, and performance, RAID-5 is strictly better than RAID-4. 

True or False; threw out this question.   

51) In an FFS-like file system, multiple inodes may point to the same file descriptor. 

False; inodes don’t point to file descriptors. 

52) In an FFS-like file system, multiple inodes may point to the same path name. 

False; path names point to inodes, not the other way around. 

53) An advantage of soft links over hard links is that soft links can be used to refer to directories. 

True, soft links can be used for directories while hard links cannot.   

54) Contiguous allocation of files to blocks on disk tends to achieve excellent sequential bandwidth. 

True; contiguous allocation forces all the blocks of a file to be allocated contiguously, which gives 

excellent sequential bandwidth. 

55) A File-Allocation Table suffers from external fragmentation. 

False; FAT table assumes fixed-sized pages which have internal, not external, fragmentation. 

56) An inode structure typically contains a field indicating the name of this file. 

False; inodes do not contain file names since multiple filenames could point to the same inode. 

57) An inode structure typically contains a field indicating the time at which this file was last accessed. 

True, they do… 

58)  An inode structure can contain pointers to directory data. 

True; inodes contain pointers to file or directory data; directories are typically stored just like files, but 

with a special bit set in the inode. 

59) FFS attempts to put the inode and data blocks from the same file in the same cylinder group. 

True; this way, good locality between two related structures. 

60) FFS attempts to put inodes from files in the same directory in the same cylinder group. 

True; this way good locality for related files. 

61) When placing parts of a large file in a “new” group, FFS looks for a group with more than the average 

number of free inodes.   



 

 

False; the large file is put in a new group, but it looks for a group with more than the average number of 

data blocks, since this large file will probably consume a lot of data blocks (not inodes). 

62) After a crash, FSCK fixes the on-disk state of the file system to match its state before the last update to 

disk began. 

False; FSCK just tries to make the on-disk state consistent; it doesn’t know the correct state of the file 

system before (or after) an particular update. 

63) After the journal commit block is successfully written to disk, a journaling file system can then 

checkpoint the relevant blocks to their final in-place positions. 

True, this is what it does. 

64) Write-back journaling forces data blocks to be written to their final in-place positions before 

committing a journal transaction that refers to those data blocks.  

False, this is the definition of ordered journaling; write-back journaling does not force the data blocks to 

be written first (which can lead to inconsistencies). 

65) When LFS writes a new copy of a data block to a segment, it also writes a new copy of the inode that 

points to that data block.   

True; since the data is in a new location in the log, the pointers to that location that are stored in the 

inode also have to change; LFS does not overwrite inodes (which would be a random write) and instead 

writes a new copy of the inode to the log. 

66) When LFS writes a new copy of inode to a segment, it also writes a new copy of the directory that 

points to that inode. 

False; LFS handles the fact that the location of the inode changes by having an imap to track the current 

location of each inode.  

67)  LFS periodically checkpoints imaps to a known location on disk (alternating between two locations to 

withstand crashes). 

False; LFS checkpoints pointers to portions of the imap in known locations; the modified imaps 

themselves are written out to each segment.  

68) When performing garbage collection, LFS determines that an inode is valid by verifying that the 

corresponding entry in the imap points to this location. 

True, this is what it does. 

69) When performing garbage collection, LFS determines that a data block is valid by scanning all valid 

inodes from the imap and verifying that one of the valid inodes points to this location.  

False; this would be way too slow.  Instead, LFS writes segment summary info to each segment that 

describes each updated data block (i.e., the inode that points to it and its offset in the file). 

 


