
CS 537: Introduction to Operating Systems
Fall 2016: Midterm Exam #1

This	exam	is	closed	book,	closed	notes.			
	
All	cell	phones	must	be	turned	off	and	put	away.	
	
No	calculators	may	be	used.	
	
You	have	two	hours	to	complete	this	exam.	
	
Write	all	of	your	answers	on	the	accu-scan	form	with	a	#2	pencil.						
	
These	exam	questions	must	be	returned	at	the	end	of	the	exam,	but	we	will	not	
grade	anything	in	this	booklet.		
	
Unless	stated	(or	implied)	otherwise,	you	should	make	the	following	
assumptions:	

o The	OS	manages	a	single	uniprocessor	
o All	memory	is	byte	addressable	
o The	terminology	lg	means	log2	
o 210	bytes	=	1KB	
o 220	bytes	=	1MB	
o Page	table	entries	require	4	bytes	
o Data	is	allocated	with	optimal	alignment,	starting	at	the	beginning	of	a	
page	

o Assume	leading	zeros	can	be	removed	from	numbers	(e.g.,	0x06	==	0x6).	
	
This	exam	has	multiple	versions.	To	make	sure	you	are	graded	with	the	correct	
answer	key,	you	must	identify	this	exam	version	with	a	Special	Code	in	Column	
A	on	your	accu-tron	sheet.	Be	sure	to	fill	in	the	corresponding	bubble	as	well.	
Your	special	code	is	2.	

Good luck!

Part 1: Virtualizing the CPU [3 points each]

Designate if the statement is True (a) or False (b).

1) The CPU dispatcher determines the policy for which process should be run when.

False; the dispatcher implements the mechanism; the scheduler determines the policy.

2) With cooperative multitasking, it is possible for a process to keep running on the CPU for as long as

it chooses.

True; cooperative multitasking relies on the process to enter the OS through a system call or another

trap (e.g., a page fault); if the process avoids giving control to the OS, the OS can’t switch to another

process.

3) When executing the return-from-trap instruction, hardware restores the user process’s registers from

the kernel stack, changes to user mode, and jumps to a new code location.

True, that is what return-from-trap does…

4) When an I/O operation completes, the previously blocked process moves into the RUNNING state.

False, the process could move to either READY or RUNNING.

5) The fork() system call clones the calling process and overlays a new file image on the child process.

False, fork() just clones the calling process; the process needs to call exec() to overlay a new file

image.

6) A FIFO scheduler has lower average turnaround time when long jobs arrive after short jobs,

compared to when short jobs arrive after long jobs.

True. If the long jobs arrive after the short jobs, then they will be scheduled after the short jobs;

moving a long job after a short job reduces average turnround time (just like what SFJ does).

7) An SJF scheduler may preempt the currently running job.

False. SJF is non-preemptive; a job has to complete or relinquish the CPU before a different job is

schedule.

8) An SJF scheduler can suffer from the convoy effect.

True. Assume a very long job is scheduled and then shortly thereafter many short jobs arrive; all of

those short jobs will have to wait for the one long job.

9) An RR scheduler may preempt the currently running job.

True. RR preempts after a time-slice has expired.

10) An STCF scheduler cannot cause jobs to starve.

False, long jobs CAN starve if shorter jobs keep arriving.

11) If all jobs arrive at the same point in time, an SJF and an STCF scheduler will behave the same.

True, they only behave differently if a job arrives while some jobs are already running (in which case,

STCF may preempt).

12) If all jobs have identical run lengths, a RR scheduler provides worse average turnaround time than

FIFO.

True. With RR the identical jobs will all finish at nearly the same time – at the very end, giving them

the worst possible average turnaround time. With FIFO, the scheduling might seem less fair, but only

one of the jobs will the worst turnaround time.

13) With an MLFQ scheduler, jobs run to completion as long as there is not a higher priority job.

False; multiple jobs at the same priority level will be scheduled with RR.

14) With an MLFQ scheduler, while a job is waiting for I/O to complete, the job remains in the READY

state without changing priority.

False; jobs move to the BLOCKED state when waiting for an event to complete that doesn’t need the

CPU.

15) With lottery scheduling, ready jobs must be sorted by the number of tickets that they hold.

False; to pick the winner of a lottery, the scheduler will search for the job with that ticket which does

not require the list to be sorted (though keeping the list sorted can improve efficiency).

Part 2: Virtualizing Memory [3 points each]

Designate if the statement is True (a) or False (b).
16) The heap and stack are statically allocated portions of a process’ address space.

False, they are dynamically allocated; their sizes change over time.

17) The address space for a process contains all of physical memory.

False, the address space for a process is virtual; it can contain less than physical memory or more.

18) With dynamic relocation, the OS determines where the address space of a process is allocated in physical

memory.

True, the OS manages the mapping between virtual and physical; the OS allocates space in physical memory for each

address space.

19) Two different address spaces (that do not share any pages) must contain different valid vpn’s from one another.

False; two different address spaces can have the same valid virtual pages as one another; a vpn is interpreted in the

context of the current address space.

20) An MMU converts physical addresses to logical addresses for user-level processes.

False; converts logical to physical addresses.

21) With segmentation, the address space of each process must be allocated contiguously in physical memory.

False, just each segment must be contiguous.

22) With segmentation, each segment has its own base and its own bounds.

True, each segment is defined by a starting location and limit.

23) With pure segmentation (and no other support), fetching and executing an instruction that performs a store from

a register to memory will involve exactly four memory references.

False, with segmentation no extra memory references are need for address translations since the base and bounds of

each active segment can be kept in a register. So, 1 ref to fetch the instruction and 1 ref to do the store.

24) The number of virtual pages can be different than the number of physical pages.

True, page sizes need to be the same but not number of pages.

25) If 10 bits are used in a virtual address to designate an offset within a page, each page must be exactly 1 KB.

True, 10 bits of offset à 2^10 bytes can be addressed for each page à 1 KB.

26) If a physical address is 28 bits and each page is 4KB, the top 14 bits exactly designate the physical page number.

False. 28 bits – 12 bits (required for 4KB pages) = 16 bits (not 14).

27) If a virtual address is 8 bits and each page is 32 bytes, then each address space can contain up to 8 pages.

True. 8 – 5 bits (required for 32 byte pages) = 3 bits for the vpn. 2^3 = 8 virtual pages.

28) Given a constant number of bits in a virtual address, the size of a linear page table decreases with larger pages.

True, if there are larger pages, then there must be a fewer number of pages; fewer pages à fewer entries in page table

à smaller page table.

29) Given a fixed page size, the size of a linear page table decreases with a smaller address space.

True, with a smaller address space, there are fewer pages à smaller page table.

30) Given a 20-bit virtual address and 1KB pages, each linear page table will consume 1KB.

False. Told on coversheet to assume 4 byte PTEs unless otherwise specified. 20 – 10 bits (for 1KB pages) = 10 bits à

2^10 entries; 2^10 * 4 bytes = 4KB page table.

31) Compared to pure segmentation, a linear page table doubles the number of memory references (assuming no

TLB).

True, a linear page table is kept in main memory; for each memory reference in the application, now need to look up

virtual address to physical address translation (need one vpn -> ppn mapping).

32) A workload that sequentially accesses data has good temporal locality.

False, with sequential accesses, the next address nearby in space close to the previous reference will be accessed (spatial

locality).

33) On a TLB miss, a new page in physical memory is allocated by the OS.

False, on a TLB miss, the page translation must be found in the page tables.

34) A page fault occurs if the valid bit is clear (equals 0) in a PTE needed for a memory access.

False, on a page fault the present big is clear indicating that the page is valid but swapped out to the backing store.

35) With paging, a single physical page can be shared across two address spaces only if they have the same virtual

page number in each address space.

False, any vpn can point to the same ppn across different address spaces.

36) A multi-level page table typically reduces the amount of memory needed to store page tables, compared to a

linear page table.

True; with multiple levels, if there are regions of a sparse address space that are not currently valid (e.g., the space

between the heap and the stack), then the page tables for those regions do not have to be allocated.

37) Given a 2-level page table (and no TLB), exactly 3 memory accesses are needed to fetch an instruction.

True; 1: lookup in page directory that is stored in memory (outer level page table); 2: lookup page table pointed to by

page directory entry; 3: lookup actual instruction at calculated physical address

38) In the memory hierarchy, a backing store is larger than the memory layer above that uses that backing store.

True; the layer beneath another in the memory hierarchy is usually larger (and cheaper per byte), but slower, than the

layer above.

39) When the dirty bit is set in a PTE, the contents of the TLB entry do not match the contents in the page table.

False, the dirty bit means that the page in physical memory does not match the version on the backing store.

40) If a clean page and a dirty page have both been accessed recently, the page replacement algorithm should replace

the clean page over the dirty page.

True, it is less expensive to replace the clean page since its contents can just be thrown away (whereas the changes to

the dirty page must first be flushed out to disk before that page can be reused).

41) A TLB miss is usually slower to handle than a page miss.

False, TLB miss just requires accessing RAM; page miss requires accessing next level of backing store.

42) A different user-level process should be scheduled when a page miss is being handled.

True, since this process is blocked waiting for page miss (which will take awhile), another READY process should be

run.

43) LRU always performs as well or better than FIFO.

False, you can construct workloads where FIFO does better, worse, or the same as LRU.

44) LRU with N+1 pages of memory always performs better than LRU with N pages of memory.

FALSE – read the question instead of assuming it is the same as on the previous exam! LRU performs equal or better

with N+1 pages; the extra page might not help.

45) FIFO with N+1 pages of memory always performs better than FIFO with N pages of memory.

False, due to same reason as above and due to Belady’s anomaly (and FIFO does not adhere to stack property).

Part 3: Process States [1 points each]
Assume you have a system with three processes (A, B, and C) and a single CPU. Assume an MLFQ scheduler.
Processes can be in one of five states: RUNNING, READY, BLOCKED, not yet created, or terminated. Given the
following cumulative timeline of process behavior, indicate the state the specified process is in AFTER that step, and
all preceding steps, have taken place.

For all questions in this Part, use the following options for each answer:

a. RUNNING
b. READY
c. BLOCKED
d. Process has not been created yet
e. Process has been terminated

Step 1: Process A is loaded into memory and begins; it is the only user-level process in the system.

46) Process A is in which state? A. RUNNING

Step 2: Process A calls fork() and creates Process B. Process B is scheduled.

47) Process A is in which state? B. READY
48) Process B is in which state? A. RUNNING

Step 3: The running process issues an I/O request to the disk.

49) Process A is in which state? A. RUNNING (since it is only READY job now)
50) Process B is in which state? C. BLOCKED (since it issued I/O)

Step 4: The running process calls fork() and creates process C. Process C is not yet scheduled.

51) Process A is in which state? A. RUNNING (no change)
52) Process B is in which state? C. BLOCKED (no change)
53) Process C is in which state? B. READY

Step 5: The time-slice of the running process expires. Process C is scheduled.

54) Process A is in which state? B. READY (time-slice expired)
55) Process B is in which state? C. BLOCKED (no change)
56) Process C is in which state? A. RUNNING (it was scheduled!)

Step 6: The previously issued I/O request completes; the process that issued that I/O request is scheduled.

57) Process A is in which state? B. READY (no change)
58) Process B is in which state? A. RUNNING (I/O completed, now scheduled)
59) Process C is in which state? B. READY (descheduled)

Part 4. CPU Job Scheduling [2 points each]

Assume a workload with the following characteristics:

Job Name Arrival Time (seconds) CPU Burst Time (seconds)
A 0 8
B 2 4
C 5 7

If needed, assume a time-slice of 1 sec.

60) Given a FIFO scheduler, what is the turnaround time of job B?

a. 4 seconds
b. 10 seconds
c. 12 seconds
d. 14 seconds
e. None of the above

FIFO Schedule: A: 0->8 B: 8->12 C: 12-19 B’s turnaround = 12 – 2 (arrival time) = 10

61) Given a FIFO scheduler, what is the average turnaround time of the three jobs?

a. 10 seconds
b. 10 1/3 seconds
c. 10 2/3 seconds
d. 13 seconds
e. None of the above

8 + 10 + 19-5 / 3 = 10.6667

62) Given an SJF scheduler, what is the turnaround time of job C?

a. 12 seconds
b. 14 seconds
c. 15 seconds
d. 19 seconds
e. None of the above

SJF Schedule (no preemption): A: 0->8 Then, since 4 < 7, B picked next B:8->12 C: 12-19
19-5 = 14

63) Given an SJF scheduler, what is the average turnaround time of the three jobs?

a. 7 seconds
b. 8 seconds
c. 9 seconds
d. 13 seconds
e. None of the above

Same schedule as FIFO.

64) Given an RR scheduler, what is the turnaround time of job B?

a. 8 seconds
b. 9 seconds
c. 10 seconds
d. 11 seconds
e. None of the above

View each character as 1 second: AABABCABCAB (now B is done after 4 seconds of runtime…)
B finished at time 11; arrived at time 2, so turnaround = 9.

65) Given an STCF scheduler, what is the average turnaround time of the three jobs?

a. 10 seconds
b. 10 1/3 seconds
c. 10 2/3 seconds
d. 24 1/3 seconds

e. None of the above

STCF Schedule: A: 0->2 When B arrives, it preempts: B: 2->6 A: 6->12 (total of 8) C: 12->19
Turnaround times: A: 12, B: 4, C: 14 Ave: 10

66) Assume an STCF scheduler for the original workload with jobs A, B, and C. Assume a new job D requiring 5 seconds of

CPU time arrives at some time T. For which arrival times of T would D preempt the job running at that time?
a. 3 seconds
b. 5 seconds
c. 8 seconds
d. 13 seconds
e. None of the above OR More than one of the above

Given this schedule: STCF Schedule: A: 0->2 When B arrives, it preempts: B: 2->6 A: 6->12 (total of 8) C: 12->19
D of 5 seconds will be less than the remaining run time of the running job when…
T = 3? No, B is running and only needs 3 more seconds
T = 5? No, B is running and only needs 1 more second
T = 8? No, A is running and only needs 4 more seconds
T = 13? Yes, C is running and needs 6 more seconds; 5 < 6, so D preempts…

67) Assume an STCF scheduler for the original workload with jobs A, B, and C. Assume a new job E arrives at time 8.5

seconds. What is the longest that its CPU burst could be to preempt the job that was running at time 8.5? Pick the best
answer.

a. 1 second
b. 2 seconds
c. 3 seconds
d. 4 seconds
e. None of the above (removed option as announced during exam)

Given this schedule: STCF Schedule: A: 0->2 When B arrives, it preempts: B: 2->6 A: 6->12 (total of 8) C: 12->19
What is happening at time 8.5? A is running and has 3.5 more seconds of runtime, so as long as E < 3.5, it
will be preempt.

Part 5. Dynamic Relocation [2 points each]

Assume you have an architecture with 1KB address spaces and 16KB of physical memory. Assume you are
performing dynamic relocation with a base-and-bounds register. The base register contains 0x00001acf
(decimal 6863) and the bounds register contains 292 (decimal). Translate each of the following virtual
addresses into physical addresses.

68) Virtual address 0x0000019e (decimal: 414) is physical address:

a. 0x000002c2 (decimal: 706)
b. 0x00001c6d (decimal: 7277)
c. 0x00007277 (decimal: 29303)
d. Segmentation Violation
e. None of the above

Address 414 > bounds, so this causes a segmentation fault or violation.

69) Virtual address 0x0000007d (decimal: 125) is physical address

a. 0x000001a1 (decimal: 417)
b. 0x00001b4c (decimal: 6988)
c. 0x00006988 (decimal: 27016)
d. Segmentation Violation

e. None of the above

125 < 292; Base + address = 6863 + 125 = 6988 (all decimal)

70) Virtual address 0x000000ee (decimal: 238) is physical address

a. 0x00000c05 (decimal: 3077)
b. 0x0000051d (decimal: 1309)
c. 0x0000051e (decimal: 1310)
d. Segmentation Violation
e. None of the above

238 < 292; 6863 + 238 = 7101 à none of the above

Part 6. Reverse Engineering the Page Table [2 points each]
Assume dynamic relocation is performed with a linear page table. Assume a system with the following parameters:
• address space size is 32KB à 15 bits
• physical memory size is 128KB à 17 bits
• page size is 4KB à 12 bits
à 3 bits for vpn (8 pages)
à 5 bits for ppn (32 pages)
Assume you are given the following trace of virtual addresses and the physical addresses they translate to. Can you reverse engineer the contents of
the page table for this process?
 VA 0x00006e19 --> 0003e19 à vpn 6 à ppn 3
 VA 0x00004d35 --> 0000ad35 à vpn 4 à ppn a
 VA 0x000030d8 --> 000050d8 à vpn 3 à ppn 5
 VA 0x0000244d --> 0001a44d à vpn 2 à ppn 1a
 VA 0x00005665 --> Invalid à vpn 5 à Invalid entry
 VA 0x00000084 --> 0000d084 à vpn 0 à ppn d
71) Page Table Entry 0

a. Valid, PFN = 0x00
b. Valid, PFN = 0xd0
c. Invalid Entry or page table does not contain entry for this VPN
d. Contents of PTE cannot be determined from this address trace
e. None of the above (e.g., Valid, but a different PFN) PPN = 0xd

72) Page Table Entry 1
a. Valid, PFN = 0x01
b. Valid, PFN = 0x10
c. Invalid Entry or page table does not contain entry for this VPN
d. Contents of PTE cannot be determined from this address trace
e. None of the above (e.g., Valid, but a different PFN)

73) Page Table Entry 2
a. Valid, PFN = 0x01
b. Valid, PFN = 0x1a
c. Invalid Entry or page table does not contain entry for this VPN
d. Contents of PTE cannot be determined from this address trace
e. None of the above (e.g., Valid, but a different PFN)

74) Page Table Entry 3
a. Valid, PFN = 0x06
b. Valid, PFN = 0x6e
c. Invalid Entry or page table does not contain entry for this VPN
d. Contents of PTE cannot be determined from this address trace
e. None of the above (e.g., Valid, but a different PFN) PPN = 0x5

75) Page Table Entry 4
a. Valid, PFN = 0x0a
b. Valid, PFN = 0xad
c. Invalid Entry or page table does not contain entry for this VPN
d. Contents of PTE cannot be determined from this address trace
e. None of the above (e.g., Valid, but a different PFN)

76) Page Table Entry 5
a. Valid, PFN = 0x03
b. Valid, PFN = 0x30
c. Invalid Entry or page table does not contain entry for this VPN
d. Contents of PTE cannot be determined from this address trace
e. None of the above (e.g., Valid, but a different PFN)

77) Page Table Entry 6
a. Valid, PFN = 0x03
b. Valid, PFN = 0x30
c. Invalid Entry or page table does not contain entry for this VPN
d. Contents of PTE cannot be determined from this address trace
e. None of the above (e.g., Valid, but a different PFN)

78) Page Table Entry 7
a. Valid, PFN = 0xd0
b. Valid, PFN = 0x1a
c. Invalid Entry or page table does not contain entry for this VPN
d. Contents of PTE cannot be determined from this address trace
e. None of the above (e.g., Valid, but a different PFN)

79) Page Table Entry 8
a. Valid, PFN = 0x03
b. Valid, PFN = 0x1a
c. Invalid Entry or page table does not contain entry for this VPN Only 8 virtual pages (pages 0 – 7)
d. Contents of PTE cannot be determined from this address trace
e. None of the above (e.g., Valid, but a different PFN)

Part 7. Multi-level Page Tables [2 points each]
Assume dynamic relocation is performed with a two-level page table with no TLB. Assume the page size is an
unrealistically-small 32 bytes, the virtual address space for the current process is 1024 pages, or 32 KB, and physical
memory consists of 128 pages. Thus, a virtual address needs 15 bits (5 for the offset, 10 for the VPN) and a physical
address requires 12 bits (5 offset, 7 for the PFN). The upper five bits of a virtual address are used to index into a page
directory; the page directory entry (PDE), if valid, points to a page of the page table. Each page table page holds 32
page-table entries (PTEs). Each PTE, if valid, holds the desired translation (physical frame number, or PFN) of the
virtual page in question. The format of an 8-bit PTE is VALID | PFN6 ... PFN0.

You also know that the PDBR points to page 51 (decimal) and the contents of memory are as follows:

page 0: 7f 7f 7f 7f 7f 7f 7f 7f e4 7f
page 1: 7f e5 7f ec 7f 7f 7f 7f 7f 7f 7f 7f 7f
page 2: 7f ca 7f 7f e3 7f ce
page 3: 07 19 19 19 0e 06 1a 0d 1e 01 03 0d 19 10 08 0f 09 1d 0c 07 12 0d 1a 01 1b 08 0c 1a 02 0e 12 10
page 4: 0e 03 17 06 05 0d 02 1c 1a 02 07 19 17 10 14 0d 12 13 17 1e 10 04 17 1e 10 1c 17 17 18 12 03 04
page 5: 05 1c 0c 01 06 03 0f 07 1d 0a 07 11 19 10 09 14 1e 10 19 13 11 08 11 0d 0b 10 16 0c 18 00 1a 11
page 6: 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f bf dc 7f 7f 7f 7f 7f 7f e6 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f
page 7: 1b 03 1c 0d 10 17 1a 03 12 05 1d 17 07 0a 1e 1d 17 01 06 12 06 10 00 0e 0e 19 0a 1b 07 00 0e 05
page 8: 0c 15 10 03 1b 18 1c 11 01 00 10 0b 1b 01 12 0d 1d 14 09 1e 14 1d 1e 1b 00 0c 16 07 02 1b 1e 04
page 9: 19 06 0d 0d 16 11 16 1d 14 00 1e 0b 0c 09 1a 0b 01 0d 06 0d 00 18 1b 13 0c 04 06 13 01 0d 1b 1e
page 10: 12 12 1c 14 05 10 1d 19 16 07 0d 12 03 0c 0d 0b 17 08 0f 1d 12 10 16 15 11 0b 11 1c 0c 14 08 10
page 11: 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 9a 7f 7f 7f 7f 7f 7f 7f 7f 7f c5 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f
page 12: 05 05 04 06 11 17 18 1a 03 19 05 02 08 12 01 06 0c 19 0c 0c 0b 02 1b 1c 16 0c 0d 09 14 14 09 1b
page 13: 0f 1c 0e 04 04 1d 15 0a 0f 1b 0d 06 19 12 0f 05 13 10 08 1e 0f 13 12 05 01 1b 0a 0d 06 12 17 0b
page 14: 00 19 09 0a 01 14 07 10 0a 0a 01 0a 1c 1d 1c 1a 19 13 12 16 1d 12 11 16 1a 10 00 12 0a 03 01 10
page 15: 07 1b 1a 1b 0a 1a 0b 10 13 09 07 18 18 09 08 1e 0d 19 0b 0a 05 1d 17 0b 12 01 0c 0c 09 1b 16 12
page 16: 14 1e 04 1e 14 17 1d 10 10 04 0c 11 08 0d 0b 19 0a 1b 07 14 0f 09 18 1e 03 19 02 0b 1d 1d 1c 0b
page 17: 07 0f 08 02 14 0f 1e 03 17 00 15 0c 06 03 02 10 13 02 11 08 19 08 12 10 11 11 19 00 09 01 01 0e
page 18: 7f 90 8c 7f 7f 7f c3 7f 7f a8 84 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f c8 7f 8d
page 19: 1b 09 06 05 15 13 1d 1a 0e 14 00 19 03 19 11 1b 17 0a 0d 16 05 00 1d 02 19 05 10 14 0b 09 11 14
page 20: 15 14 13 09 03 13 17 11 1e 1b 0c 10 17 07 00 08 1a 16 07 04 0b 19 1c 0b 19 0e 10 03 08 04 00 0d
page 21: 00 0b 14 1b 12 02 06 0f 07 04 04 18 0a 1a 1d 0a 14 06 08 06 0f 03 19 15 03 08 07 1d 1b 06 13 17
page 22: 17 07 0b 15 10 1d 0f 0d 13 06 1b 0b 0c 15 04 14 1a 0a 1d 10 18 0e 0c 08 00 06 1e 10 0e 1b 12 1e
page 23: 01 04 1d 12 1b 02 06 16 05 04 0a 06 0f 0e 0b 10 07 15 1b 12 10 09 1b 1b 10 06 07 0a 14 1d 11 09
page 24: 7f fb 7f 7f 7f 7f 7f 89 7f 7f 7f 7f 7f 88 7f 7f 7f f8 7f fa 7f 7f 7f 7f 7f 7f 7f 7f 7f be 7f 7f
page 25: 7f 87 9e 7f
page 26: 04 03 12 03 1d 09 13 01 11 0a 1d 14 14 04 05 18 11 17 02 14 13 18 15 07 09 10 1c 11 07 1d 01 15
page 27: 04 18 12 1e 1d 14 01 00 0e 19 02 0d 02 09 00 0a 10 06 18 01 06 07 0c 17 0a 15 1c 04 1a 12 17 12
page 28: 14 12 14 07 1c 12 03 06 1a 0e 0f 0a 0f 08 1e 10 14 07 06 1b 07 12 0d 0f 0c 1d 00 03 07 11 15 0f
page 29: 19 0b 0b 09 0b 10 18 00 05 06 13 17 02 00 03 0d 15 1e 0b 0d 1b 17 1c 08 16 19 08 07 1c 06 0a 03
page 30: 07 0d 03 12 19 05 13 15 09 0b 04 13 1e 18 06 0d 0f 08 1d 1b 0d 07 17 10 16 1b 1e 18 06 11 16 05
page 31: 7f 7f 7f 7f 7f bd 7f 7f 7f 7f 7f 7f 96 7f 7f 7f 7f 7f 7f 7f de 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f f3
page 32: 1b 1b 0a 09 1d 1b 05 03 0c 18 0c 08 00 0a 01 09 00 05 0f 0b 1b 0f 05 05 0b 19 05 1c 0f 04 10 08
page 33: 06 14 16 07 15 0c 00 0c 01 06 06 0b 17 0d 19 1b 1b 19 0f 0c 18 01 17 1a 00 04 1e 11 18 0a 1b 01
page 34: 1a 00 02 00 02 02 02 16 1c 18 19 18 05 0b 01 05 06 0e 1c 0a 15 14 09 01 06 06 0f 09 14 12 03 1a
page 35: 7f 7f 7f 7f 7f 7f 7f 7f 7f db 7f bb
page 36: 11 18 11 18 09 0b 14 1a 1c 16 05 12 02 05 0d 13 06 0d 09 03 1b 19 18 04 19 1c 02 07 09 06 11 16
page 37: 7f 95 7f 7f 7f 7f 7f 7f
page 38: 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f b2 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 94 7f 7f
page 39: 7f a2 7f 7f 7f 7f b7 7f 7f e2 7f 7f 7f
page 40: 14 06 18 1c 05 0e 15 14 01 01 09 05 1d 11 1e 08 0c 1a 13 11 06 03 1e 07 15 14 0d 14 1b 02 17 12
page 41: 17 0d 07 15 1a 0d 0b 08 10 04 02 14 04 15 12 17 0a 1c 01 02 10 07 01 0e 1b 0c 0d 19 1a 05 15 14
page 42: 11 10 13 12 0c 05 12 01 01 0a 07 17 04 0d 15 0c 18 03 05 08 0b 11 06 11 15 14 19 02 15 16 19 04
page 43: 02 0b 08 06 1d 0b 1b 1a 04 1c 04 1d 07 1d 19 08 13 06 12 06 04 07 18 13 11 08 16 1e 0d 0e 12 16
page 44: 19 03 07 19 07 0c 12 1c 1c 0c 0f 10 09 15 01 14 01 09 09 17 06 0c 0e 01 14 05 02 1d 1c 0f 07 0d
page 45: 19 06 00 06 0c 05 15 13 06 08 08 1a 11 0b 14 1d 16 06 09 0c 0d 16 02 0b 1b 1d 1b 19 15 13 05 19
page 46: 09 16 08 1a 13 1e 08 0b 0a 12 0c 1e 02 1e 05 17 01 10 10 16 1b 07 1c 0a 06 18 07 13 0b 11 07 07
page 47: 7f 7f 7f 7f 7f d9 7f 7f 7f 7f 7f 7f 91 7f 7f 7f 7f 7f e8 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f
page 48: 00
page 49: 00
page 50: 04 1d 1b 19 09 03 0d 02 0a 12 09 0a 0a 19 01 19 12 10 15 00 1a 08 0c 0f 1b 07 10 1e 06 14 05 11
page 51: cd a6 d2 7f a3 d4 9f c4 c0 98 99 f5 af 92 80 dd 81 cb b9 7f 86 82 d7 d6 c9 c6 ef a5 b8 8b ea a7
page 52: 13 02 0c 15 03 07 16 19 15 15 0b 19 0b 0a 06 0f 0a 0b 16 1b 09 05 1e 04 13 04 0d 1e 14 17 16 16
page 53: 16 1c 15 1b 0b 09 11 11 0a 0c 0e 01 1b 16 13 03 0b 0b 10 10 1a 0e 05 16 1c 1d 15 04 01 08 15 13
page 54: 13 0d 1e 1d 12 0b 08 08 19 1a 16 0a 16 10 05 08 18 0c 17 13 1c 11 10 12 16 06 1d 12 10 07 08 14
page 55: 10 00 01 1e 08 10 1e 13 05 1c 0f 1b 1c 10 1a 16 03 02 09 1a 02 1b 09 15 16 0a 18 10 0d 1a 16 19
page 56: 7f cf 7f ad 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f d8 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f
page 57: 7f 7f 7f 7f 7f 7f 7f ab 7f ac 7f 7f 8f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f f2 7f 7f 7f 7f 7f 7f 7f
page 58: 1c 0c 00 1d 06 0e 12 1b 0b 0d 06 1d 1d 14 00 0e 17 16 01 13 05 09 0a 0d 11 09 1b 02 19 17 1a 14

page 59: 1a 13 16 05 11 15 01 0c 14 04 1d 06 03 15 1e 17 10 0a 06 01 06 13 07 1e 04 07 0c 1d 0a 05 16 02
page 60: 16 04 1c 17 0a 1a 07 03 09 0a 02 1a 1b 1e 08 13 0e 0d 12 17 06 10 1b 15 1d 01 0a 05 07 0e 10 12
page 61: 11 16 01 12 02 10 06 16 0e 03 0f 0e 16 1b 1e 1e 01 10 0c 19 07 1c 04 04 07 0a 19 0b 11 1a 02 0f
page 62: 06 09 0d 14 09 02 0e 0d 0e 0b 0d 0d 09 0e 11 05 0e 19 0f 0a 01 0b 13 0b 1e 1c 04 15 05 00 1d 0e
page 63: 01 0d 12 05 04 14 15 10 0b 11 04 07 03 0d 0c 11 14 0b 01 16 16 1d 1e 0c 0f 1c 06 04 0f 12 08 05
page 64: 7f 7f 7f 7f f1 7f d3 7f 7f 7f ed 7f 7f 7f 7f 7f 7f 7f 7f ae 7f 7f 7f 7f c2 7f 7f 7f 7f 7f 7f 7f
page 65: 07 17 1d 07 02 0b 16 0b 12 10 17 1c 05 0c 0b 05 09 08 0d 1e 11 0f 0d 05 14 1d 14 0d 19 06 0a 08
page 66: 17 17 04 0e 0d 09 12 05 17 01 1e 14 16 17 0c 0f 15 1c 1b 0e 0f 05 17 0d 0c 06 14 0e 03 07 0b 12
page 67: 0b 0c 04 19 03 12 01 1d 0d 09 15 0b 01 07 07 00 1e 18 1b 1a 0d 0d 06 19 0c 08 0e 18 06 1e 0c 10
page 68: 7f 7f 93 7f 7f 7f 7f 7f 7f 7f 7f 7f f4 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f
page 69: 0a 18 16 09 08 10 02 04 0c 1e 1d 01 16 14 13 1d 1e 10 14 1a 04 0e 1c 00 0b 09 05 0d 0b 07 1d 1b
page 70: 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f f6 7f 7f a1 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f
page 71: 05 0a 1d 15 16 09 14 0a 06 04 05 02 0c 1a 10 0b 13 1c 08 1c 1e 0a 01 15 1c 0b 09 07 03 14 08 1c
page 72: 00 06 1b 05 09 1e 07 11 0d 00 13 0f 1d 1e 02 12 0a 04 1c 02 0f 07 11 06 1a 0d 06 18 04 16 07 1a
page 73: 7f 7f 7f 7f 7f 7f a0 7f 7f 7f 7f b5 83 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f
page 74: 18 06 14 1e 00 0d 1d 08 19 19 15 1e 15 03 1a 17 0b 02 08 10 07 1e 04 08 03 17 19 07 0c 1b 12 06
page 75: 7f f9 7f 7f 7f 7f 7f
page 76: 12 0d 03 10 12 12 1b 11 0b 11 16 0c 19 16 18 01 13 0b 12 01 0c 0f 12 09 00 00 16 19 19 0d 0b 1a
page 77: 7f 8a 7f 7f 7f 9c 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f ff eb 97 7f 7f 7f 7f 7f 9d 7f 7f 7f 7f
page 78: 03 15 15 0b 08 10 0d 0c 0e 1c 0b 00 00 0b 05 18 1c 0d 1b 11 1d 0e 1a 1b 03 10 06 18 13 09 14 1e
page 79: 0d 00 17 02 0b 16 08 17 1b 15 0d 1c 09 1e 12 10 1b 03 08 18 02 1c 0e 0f 1e 02 00 11 13 1a 05 1b
page 80: 00
page 81: 17 1a 07 1a 0a 0c 03 10 00 09 14 17 05 18 0d 06 17 16 0e 10 13 13 17 17 06 00 03 09 11 1d 0c 0b
page 82: 7f e1 a9 ba 8e 7f 7f 7f 7f
page 83: 1a 10 07 10 15 0d 10 02 07 17 0a 05 18 00 01 01 05 01 09 08 1c 07 11 09 16 03 0a 04 09 08 0e 1d
page 84: 7f 7f 7f 7f 7f a4 7f 7f 7f 7f 7f 7f 7f 7f 7f d1 cc 7f 7f 7f 7f 7f 7f 7f 7f b4 7f 7f 7f 7f 7f 7f
page 85: 1d 0d 1d 09 08 0f 1c 1b 08 1c 04 0a 10 00 19 17 17 18 18 11 1d 19 09 0a 02 1a 03 04 13 13 0f 0a
page 86: 7f 85 e7 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f fd 7f 7f 7f 7f 7f 7f 7f 7f 7f
page 87: 7f 7f 7f c1 7f b6 7f
page 88: 00 0a 19 10 06 0c 14 05 07 1a 0c 0c 1e 1d 09 00 05 1e 15 07 1c 1b 16 00 10 06 07 0c 0c 1b 0b 05
page 89: 1a 00 1c 1b 0c 15 00 09 16 1d 09 06 12 15 0e 0f 08 1b 0b 0f 02 02 0d 00 12 18 1c 0c 07 05 1e 0e
page 90: 00
page 91: 10 15 02 1e 15 10 11 0a 0b 0e 17 04 00 19 19 02 12 0b 0b 15 10 08 1e 14 06 14 01 0c 05 02 13 19
page 92: 0b 14 03 00 18 04 0f 0a 0d 1a 18 16 1a 1a 17 02 11 05 1b 17 19 10 0c 0a 1d 1b 04 02 14 08 10 13
page 93: 7f 7f fc 7f 7f 7f 7f 7f 7f 7f e0 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f aa 7f 7f 7f 7f 7f 7f
page 94: 0a 0f 0a 19 15 1c 0f 0e 09 08 1b 0b 1b 1a 1c 11 17 1e 0e 0e 1e 04 0d 17 1d 04 0a 0c 01 00 06 13
page 95: 00
page 96: 0c 0c 19 17 00 09 09 08 03 0e 0e 13 0c 18 16 1c 00 19 1e 0f 10 1c 09 19 0e 1a 16 0e 04 08 13 0a
page 97: 05 1a 16 13 17 12 0a 01 0a 13 05 05 03 0f 1d 16 00 0b 15 03 18 07 0d 18 1b 02 19 1b 19 17 0b 09
page 98: 0d 0f 13 0e 04 0a 03 0f 13 12 02 11 18 11 0a 18 0c 18 00 02 0e 02 06 1c 18 09 03 16 15 05 11 13
page 99: 12 0c 17 0d 0e 0b 0f 0f 07 15 1c 00 1e 19 1e 0c 05 0f 1c 06 19 17 11 14 1d 11 1a 1c 14 11 1c 06
page 100: 12 0a 07 07 09 02 03 01 0a 1c 0a 1a 05 16 1d 06 12 16 00 00 0d 08 0b 10 18 07 1a 08 14 1b 03 1d
page 101: 07 04 1c 1a 18 15 0f 18 1b 1b 03 07 08 13 00 19 1b 07 07 19 0e 06 0e 03 16 10 0d 1c 1a 06 0b 0e
page 102: 01 0a 06 07 01 03 0e 1e 0d 01 1a 11 11 0d 00 02 0b 1c 00 0c 01 15 05 07 02 00 0b 13 04 1d 1c 1b
page 103: 07 09 17 02 0d 1d 07 0f 1c 1b 18 10 1c 07 1b 0c 14 12 08 15 12 1e 14 0d 0b 1b 0a 14 15 1d 05 14
page 104: 1c 01 00 04 0f 16 03 03 01 0b 0d 16 10 18 10 07 08 11 05 13 11 17 0d 1d 1d 15 05 1e 12 04 08 18
page 105: 17 00 0a 03 06 0b 09 1c 1b 13 0a 0b 1b 02 0c 02 13 0f 11 03 0a 05 1d 0e 02 05 0e 09 12 1c 0d 12
page 106: 7f 7f d5 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f c7 7f 7f 7f 7f 7f f0 7f 7f 7f 7f 7f 7f 7f 7f
page 107: 0f 18 1a 1b 08 1c 18 11 05 19 18 1d 15 0f 09 11 0d 1b 0a 10 16 1d 0e 03 1e 10 01 0f 15 15 0c 01
page 108: 1d 17 13 08 02 0c 0f 11 05 0b 04 00 0f 0e 12 0d 14 1d 0c 12 10 0f 00 02 11 12 0b 0a 03 15 13 03
page 109: 12 1e 0f 1c 05 1b 10 03 12 09 00 02 00 0d 19 12 14 03 13 0d 03 0e 19 14 18 00 08 1e 01 05 0c 02
page 110: 00
page 111: 7f 7f 7f 7f 7f 7f 7f 7f 7f f7 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f bc 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f
page 112: 09 11 05 16 06 15 18 12 08 19 1d 00 18 18 18 10 04 0b 15 14 02 00 03 18 00 02 02 01 03 18 1e 19
page 113: 1b 1d 1c 1a 16 1d 06 04 19 1d 10 10 13 15 0d 03 05 0d 03 01 12 1d 0c 18 11 0d 11 1e 03 11 08 12
page 114: 17 04 0e 07 0b 0b 02 0f 06 10 10 0d 1b 10 14 1d 0d 1a 0c 00 06 07 14 05 14 09 14 1c 14 15 12 11
page 115: 13 14 17 1b 03 07 00 0a 14 0b 12 1e 0d 12 10 0e 03 0c 18 17 1b 1b 1a 0c 1e 0a 0a 05 07 15 18 01
page 116: 02 0e 18 15 03 0c 09 06 07 19 11 18 0c 1a 00 0a 05 08 16 05 1b 11 1b 00 01 01 1e 0e 01 08 0a 08
page 117: 7f e9 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 9b 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f
page 118: 03 10 09 12 00 01 0b 08 17 02 04 14 15 1d 15 06 08 17 0f 00 11 0c 15 00 11 1c 10 0c 05 04 0d 0c
page 119: 1c 08 19 0b 05 14 0a 09 13 14 00 00 10 02 03 1c 1d 16 1c 15 1c 00 0b 0b 0a 08 09 17 1d 1c 0c 12
page 120: 08 08 0f 13 12 0e 0e 1e 1e 03 0f 06 05 0f 06 0e 1c 13 0f 14 1c 13 0b 07 12 07 1b 0c 16 09 1a 1d
page 121: 09 17 1e 18 0c 05 0e 03 04 0d 1a 15 0c 1d 05 07 08 11 1b 0b 19 1d 0e 1b 1b 0e 05 02 07 0e 00 0a
page 122: 0d 1a 03 05 02 0e 0e 01 11 12 15 12 01 01 0f 07 09 15 15 0a 19 03 03 05 1b 11 14 00 11 1a 0f 16
page 123: 0d 1d 06 04 17 11 03 0f 07 09 1d 1e 16 05 07 17 10 0e 09 1d 07 0c 03 1c 14 04 18 1d 0e 15 10 18
page 124: 0d 0f 1d 14 1e 0d 1b 0d 08 1d 13 04 11 15 04 0e 0d 05 15 0f 12 10 13 18 0f 1d 1b 0e 03 0f 0b 1b
page 125: 02 19 16 1c 0d 13 17 0f 16 06 01 06 1e 0d 1b 1e 1c 11 08 12 17 16 01 01 01 07 0c 0b 17 17 08 0a
page 126: 00
page 127: 0b 1e 0b 05 12 07 0a 14 15 13 08 05 04 03 1d 0a 0c 04 1a 03 13 04 17 1d 13 04 08 1d 08 02 13 07

80) When	accessing	virtual	address	0x5c5b,	what	will	be	the	first	page	accessed	(decimal)?	
a. 5	
b. 51	(access	page	directory	first,	indicated	by	pdbr)	
c. 54	
d. 64	
e. Error	or	None	of	the	above	

	
Write	0x5c5b	in	binary:	
0101	1100	0101	1011	
Regroup	with	5	bits	for	offset,	5	bits	for	page	table	index,	and	5	bits	for	page	directory	index:	
	10111	->	pd	index	
	00010	->	pt	index	
	11011	->	offset	
	
	
81) What	index	of	the	page	directory	will	be	accessed	first	(hexadecimal)?	

a. 0x05	
b. 0x17	
c. 0x5c	
d. 0xb1	
e. Error	or	None	of	the	above	

10111	->	0x17	hex	(16	+	4	+	2	+	1	=	23	decimal)		
	

82) What	will	be	the	second	page	accessed?	
a. 0x64	(decimal:	100)	
b. 0x66	(decimal:	102)	
c. 0x54	(decimal:	84)	
d. 0x56	(decimal:	86)	
e. Error	or	None	of	the	above	

Contents	of	entry	23	(decimal)	are	:	0xd6	in	binary:	1101	0110	à	valid	entry,	page	table	at	ppn	=	
101	0110	=	0x56	

	
83) What	are	the	contents	of	the	corresponding	PTE	that	will	be	read?	

a. 0x67	
b. 0xd7	
c. 0xe7	
d. 0xf7	
e. Error	or	None	of	the	above	

From	earlier	calculation,	will	read	entry	00010	(the	pt	index	from	the	original	v.a.)	of	the	page	
table	at	0x56	(decimal	86).		Entry	2	=	0xe7.	
	
84) What	is	the	final	physical	address	for	this	virtual	address?	

a. 0x5fb	
b. 0xc5b	
c. 0xcfb	
d. 0x51fb	
e. Error	or	None	of	the	above	

	

Write	out	0xe7	in	binary:	0x1110	0111	à	valid	entry,	final	ppn	is	110	0111		
à	final	pa	is	(ppn,	page	offset	calculated	earlier	from	va)	110	0111	11011		
à	regroup	to	get			1100	1111	1011	à	0xcfb	

	
85) What	are	the	contents	(i.e.,	the	value)	at	that	final	physical	address?	

a. 0x14	
b. 0x5b	
c. 0x84	
d. 0x514	
e. Error	or	None	of	the	above	

Look	at	page	1100111	which	is	64	+	32	+	4	+2	+	1	=	103	
Entry	11011	=	16	+	8	+	2	+	1	=	27th	à	0x14	
	
86) When	accessing	virtual	address	0x0fa3,	what	are	the	contents	at	the	corresponding	

physical	address?	
a. 0x04	
b. 0x14	
c. 0x5b	
d. 0x84	
e. Error	or	None	of	the	above	

Write	in	va	in	binary	(regrouped	for	address	format):	0	00011	11101	00011		
à	Look	in	element	3	of	page	directory	(at	location	51).			Contents	are	0x7f	à	top	bit	not	set,	so	
entry	is	not	valid.		Invalid	access!	

Part	8.		Hitting	or	Missing	in	the	TLB	[2	points	each]	
The	following	questions	ask	you	to	calculate	the	miss	rate	(or	hit	rate)	for	the	TLB.		Assume	you	have	a	
virtual	address	that	requires	16	bits	and	there	are	512	possible	virtual	pages	per	address	space.		You	
should	ignore	all	instruction	references	(i.e.,	do	not	consider	how	they	impact	the	contents	of	the	TLB).			
Assume	the	array	is	page-aligned.	
512	vpns	à	9	bits	for	vpn		
à	16	–	9	bits	=	7	bits	for	page	à	128	byte	pages	
87) Assume	you	have	a	1-entry	TLB.		Assume	the	running	process	sequentially	accesses	contiguous	

4-byte	integers	in	an	extremely	large	array,	starting	at	index	0.		What	will	be	the	TLB	miss	rate?	
a) 1/1	
b) ¼	
c) 1/32	
d) 1/128	
e) None	of	the	above	or	Not	enough	information	to	answer	

With	128	byte	pages,	128	bytes	/	4	bytes/integer	à	32	integers	/	page	
Each	page	has	new	vpn	->	ppn	mapping;	so	miss	in	TLB	for	first	integer	on	each	page	and	then	hit	for	
remaining;	this	repeats	for	each	page.	
	
88) Assume	you	have	a	4-entry	TLB	with	LRU	replacement	for	the	same	workload	as	above.		What	

will	be	the	miss	rate	in	the	TLB?	
a) 1/1	
b) ¼	
c) 1/8	
d) 1/32	
e) None	of	the	above	or	Not	enough	information	to	answer	

The	4	entries	in	the	TLB	don’t	change	anything	for	the	sequential	access	pattern	(no	temporal	locality),	so	
same	behavior	as	if	had	just	1	entry	in	TLB.	
	
89) Assume	you	have	a	1-entry	TLB	and	the	running	process	accesses	every	fourth	element	(i.e.,	

every	fourth	4-byte	integer)	in	the	array	(i.e.,	index	0,	then	index	4,	then	index	8,	etc…).		What	is	
the	miss	rate	for	this	access	pattern?	

a) ¼	
b) 1/8	
c) 1/32	
d) 1/64	
e) None	of	the	above	or	Not	enough	information	to	answer	

The	TLB	miss	rate	will	go	up	by	a	factor	of	4	since	we	are	accessing	only	¼	of	the	integers	on	each	page.	
1/32	*	4	=	1/8.		Or,	calculate	another	way:	number	of	accesses	per	page:	32	integers,	workload	accesses	
32/4	of	them	à	8	accessed	integers	per	page	à	miss	1/8.	
	
90) Assume	the	running	process	repeatedly	accesses	every	4-byte	integer	in	a	128	integer	array	in	

a	loop	(i.e.,	accesses	elements	0	through	127,	then	elements	0	through	127	again,	over	and	over).			
To	have	a	hit	rate	that	approaches	1/1,	at	least	how	many	entries	must	be	in	the	TLB?			Assume	
the	TLB	uses	LRU.	

a) 1	
b) 2	
c) 3	
d) 4	
e) None	of	the	above	or	Not	enough	information	to	answer	

The	TLB	will	have	a	hit	rate	near	1/1	when	all	the	128	integers	can	be	reached	through	the	TLB;	
128	integers	require	4	pages;	therefore,	the	TLB	must	have	4	entries.	
	

91) If	the	TLB	contains	1	less	entry	than	the	number	of	entries	you	calculated	for	the	previous	
question,	what	will	be	the	TLB	hit	rate?		Assume	the	TLB	uses	LRU.	

a) 4/5	

b) 3/4	
c) 2/3	
d) 0	
e) None	of	the	above	or	Not	enough	information	to	answer	

	
If	the	TLB	has	only	3	entries,	then	with	LRU	replacement,	the	vpn->ppn	mapping	for	the	first	access	to	
each	page	will	be	a	miss.		Thus,	this	is	the	same	case	as	the	first	two	TLB	questions,	but	hit	rate	instead	of	
miss	rate.		Hit	for	31/32	accesses.					
	
NOTE:	This	was	originally	marked	incorrectly	as	option	d		when	exams	were	graded;	as	a	result,	your	
exam	grade	may	go	up	or	down	by	2	POINTS	when	re-graded	(i.e.,	2/208	possible).		You	do	not	need	to	
bring	this	to	our	attention.	
	
92) Assume	the	running	process	repeatedly	accesses	the	first	4-byte	integer	on	each	page	of	an	array	

that	fits	on	8	pages	(i.e.,	in	a	loop).		Assume	the	TLB	has	exactly	8	entries,	the	TLB	uses	LRU,	and	
the	TLB	does	not	support	ASIDs.			Assume	the	OS	performs	a	context-switch	to	another	process	
that	runs	for	only	one	memory	reference	(i.e.,	one	address	translation)	and	then	switches	back	to	
the	original	process.		What	will	be	the	hit	rate	for	the	next	iteration	through	the	loop	for	the	
original	process?		

a) 7/8	
b) 3/4	
c) 1/2	
d) 0	
e) None	of	the	above	or	Not	enough	information	to	answer	

	
If	there	are	no	ASIDs,	then	the	TLB	is	flushed	(i.e.,	every	entry	is	invalidated)	on	a	context	switch.		As	a	
result,	when	this	process	is	resumed,	none	of	its	previous	entries	are	in	the	TLB.		Thus,	every	access	(since	
each	access	in	the	loop	is	to	a	new	page)	will	be	a	TLB	miss.	
	
Congratulations	on	finishing	your	first	CS	537	Exam!	

