
CS 537: Introduction to Operating Systems 
Fall 2016: Midterm Exam #2  

November 9, 2016 - SOLUTIONS 
 
 
 
This	exam	is	closed	book,	closed	notes.			
	
All	cell	phones	must	be	turned	off	and	put	away.	
	
No	calculators	may	be	used.	
	
You	have	two	hours	to	complete	this	exam.	
	
Write	all	of	your	answers	on	the	accu-scan	form	with	a	#2	pencil.						
	
These	exam	questions	must	be	returned	at	the	end	of	the	exam,	but	we	will	not	
grade	anything	in	this	booklet.		
	
Unless	stated	(or	implied)	otherwise,	you	should	make	the	following	
assumptions:	
o The	OS	manages	a	single	uniprocessor	
o All	memory	is	byte	addressable	
o The	terminology	lg	means	log2	
o 210	bytes	=	1KB	
o 220	bytes	=	1MB	
o Page	table	entries	require	4	bytes	
o Data	is	allocated	with	optimal	alignment,	starting	at	the	beginning	of	a	page	
o Assume	leading	zeros	can	be	removed	from	numbers	(e.g.,	0x06	==	0x6).	
	
This	exam	has	multiple	versions.	To	make	sure	you	are	graded	with	the	correct	
answer	key,	you	must	identify	this	exam	version	with	a	Special	Code	in	Column	
A	on	your	accu-tron	sheet.	Be	sure	to	fill	in	the	corresponding	bubble	as	well.	
Your	special	code	is		

There are 107 questions on this exam. 
 
Good luck! 





Part 1: Straight-forward True/False about Virtualization [2 points each] 
Designate if each statement is True (a) or False (b). 
 

1) Two processes reading from the same physical address will access the same contents. 

True – they must have a mapping so share a page so potentially different virtual addresses in 

each of their address spaces point to the same physical address.  

2) Stacks are used for procedure call frames, which include local variables and parameters. 

True. 

3) A SJF scheduler may preempt a previously running longer job. 

False – Shortest Job First is non-preemptive – it lets a running job run to completion no matter 

what type of new jobs arrive (unlike STCF which is preemptive). 

4) If all jobs have identical run lengths, a RR scheduler (with a time-slice much shorter than the jobs’ run 

lengths) provides better average turnaround time than FIFO. 

False – with RR, identical jobs will all finish at nearly the same time (at the very end of the 

workload time), which has very poor average turnaround time.  

5) The longer the time slice, the more a RR scheduler gives similar results to a FIFO scheduler. 

True – In the extreme, when the time slice is >= the length of the job, RR degenerates to FIFO 

(or FCFS). 

6) The OS provides the illusion to each thread that it has its own address space. 

False – Each process has its own address space, but threads in the same address space share that 

address space (e.g., they use the same code and heap).   

7) The OS may manipulate the contents of an MMU. 

True – the OS changes the contents of the memory management unit on a context switch across 

processes.   

8) With a single-level page table (and no other support), fetching and executing an instruction that performs 

an add of a constant value to a register will involve exactly two memory references. 

True – 1st memory reference is to page table to translate vpn to ppn (no TLB support); 2nd 

memory reference is to fetch the instruction.   

9) Given a constant number of bits in a virtual address, the size of a linear page table decreases with larger 

pages. 

True – Larger pages à Fewer pages à Fewer entries in page table à Smaller page table 

10) If a physical address is 32 bits and each page is 4KB, the top 18 bits exactly designate the physical page 

number.  

False; 4 KB pages à 12 bits for offset à 20 bits for ppn. 



11) A multi-level page table typically reduces the amount of memory needed to store page tables, compared to 

a linear page table. 

True; with multiple levels, the portions of the page table that correspond to invalid entries may 

not need to be allocated at all. 

12) Paging approaches suffer from internal fragmentation, which decreases as the size of a page decreases. 

True; internal fragmentation (the amount of wasted space) decreases if smaller units of 

allocation are used. 

13) The size of a virtual page is identical to the size of a physical page. 

True. 

14) TLB reach is defined as the number of TLB entries multiplied by the size of a page. 

True. 

15) If the valid bit is clear (equals 0) in a PTE needed for a memory access, the desired page will be swapped 

in from the backing store. 

False; if the present bit is 0, the page resides on the backing store; if the valid bit is 0, this isn’t a 

valid virtual address at all. 

16) TLBs are more beneficial with multi-level page tables than with linear (single-level) page tables. 

True, because the cost of walking a multi-level page table is higher than walking a single level 

(i.e., more memory accesses are needed) 

17) When the dirty bit is clear (equals 0) in a PTE needed for a memory access, an identical copy of the 

desired page resides in the backing store. 

True; if dirty bit is clear, then the page is clean, which means the page in memory can be 

discarded on replacement because its contents reside on the backing store (disk). 

18) LRU with N+1 pages of memory always performs better than LRU with N pages of memory. 

False; LRU performs as well or better with N+1 pages (might perform the same). 

19) FIFO with N+1 pages of memory always performs better than FIFO with N pages of memory. 

False; FIFO with N+1 pages can even perform worse. 

 
  



Part 2: Process States [1 point each] 
Assume you have a system with three processes (X, Y, and Z) and a single CPU.   Process X has the 
highest priority, process Z has the lowest, and Y is in the middle.  Assume a priority-based scheduler (i.e., 
the scheduler runs the highest priority job, performing preemption as necessary).  Processes can be in one 
of five states: RUNNING, READY, BLOCKED, not yet created, or terminated. Given the following 
cumulative timeline of process behavior, indicate the state the specified process is in AFTER that step, and 
all preceding steps, have taken place.   Assume the scheduler has reacted to the specified workload 
change. 
 
For all questions in this Part, use the following options for each answer: 
a. RUNNING 
b. READY 
c. BLOCKED 
d. Process has not been created yet 
e. Not enough information to determine OR None of the above 
 
Step 1: Process X is loaded into memory and begins; it is the only user-level process in the system. 
20) Process X is in which state? 

a. Running.  X is only process so it will be scheduled. 

 
Step 2: Process X calls fork() and creates Process Y.   
21) Process X is in which state? 
a.  Running.  X is highest priority process so it is scheduled. 

 
22) Process Y is in which state? 
b.  Ready.  Y could be scheduled, but it is lower priority than X. 
 
Step 3: The running process issues an I/O request to the disk. 
23) Process X is in which state? 
c.  Blocked.  X is waiting for I/O to complete. 
24) Process Y is in which state? 
a.  Running.  Y is now the only available ready process to schedule. 
 
Step 4: The running process calls fork() and creates process Z.   
25) Process X is in which state? 
C.  Blocked.  X is waiting for I/O to complete. 
 
26) Process Y is in which state? 
A. Running.  Y is higher priority than Z. 

 
27) Process Z is in which state? 

B.  Ready.  Z is lower priority than Y. 
 
Step 5: The previously issued I/O request completes. 
28) Process X is in which state? 

A.  Running.  X is ready and at higher priority than others. 
29) Process Y is in which state? 
B.  Ready.  Y could be scheduled, but it is lower priority than X. 
30) Process Z is in which state? 
B.  Ready.  Z is lower priority than X. 



 
 

Step 6: The running process completes.   
31) Process X is in which state? 

E.  X is in terminated state. 
32) Process Y is in which state? 
A.  Running.  Y is highest priority runnable process. 
33) Process Z is in which state? 
B.  Ready.  Z is lower priority than Y. 
 
 
  



Part 3: Straight-forward True/False about Concurrency [3 points each] 
Designate if the statement is True (a) or False (b). 
 

34) The clock frequency of CPUs has been increasing exponentially each year since 2005. 

False – clock frequency has not been increasing that dramatically recently, leading to the need 

for multiple cores to improve performance. 

35) Threads that are part of the same process share the same stack. 

False – each thread has its own stack (specifically its own stack and frame pointer) although the 

stacks are placed in the same address space. 

36) Threads that are part of the same process can access the same TLB entries. 

True – since they share an address space, they have the same vpn->ppn translations and the 

same TLB entries are valid. 

37) With kernel-level threads, multiple threads from the same process can be scheduled on multiple CPUs 

simultaneously.   

True – this is the benefit of kernel-level threads (true thread support from OS); we could not do 

this with user-level threads. 

38) Locks prevent the OS scheduler from performing a context switch during a critical section.  

False – the OS scheduler can still perform context switches whenever it wants; there is no 

coordination between the scheduler and the lock implementation.  Locks simply ensure that IF 

the scheduler schedules a second thread that also wants to enter the same critical section as the 

first thread, that the second thread cannot acquire the lock until the first thread releases it.  

39) Peterson’s algorithm uses the atomic fetch-and-add instruction to provide mutual exclusion for two 

threads.  

False – Peterson’s algorithm (using a turn variable and an per-thread intention variable) is 

based entirely on atomic word loads and stores (and is not used in current systems). 

40) A lock that performs spin-waiting can provide fairness across threads (i.e., threads receive the lock in the 

order they requested the lock). 

True – the ticket lock implementation we looked at in lecture is fair and can use spin-waiting. 

41) A lock implementation should block instead of spin if it will always be used only on a uniprocessor. 

True – on a uniprocessor, if a thread can’t acquire a lock, we’d like the thread holding the lock 

to have a chance to be scheduled (so it can more quickly release the lock). 

42) On a multiprocessor, a lock implementation should block instead of spin if it is known that the lock will 

available before the time required for a context-switch. 

False – If the thread blocks, it will waste the time of a context-switch; if the thread had just used 

spin-waiting, it would have wasted less than the time for a context-switch. 



43) Periodically yielding the processor while spin waiting reduces the amount of wasted time to be 

proportional to the duration of a context switch. 

True; instead of spin-waiting for an entire time slice, the thread will just waste the time for the 

context switch each time it is scheduled and cannot acquire the lock. 

44) When a thread returns from a call to cond_wait() it can safely assume that it holds the corresponding 

mutex.  

True; cond_wait() releases the corresponding mutex lock when it is called, but reacquires the 

lock before it returns (after being signaled). 

45) When a thread returns from a call to cond_wait() it can safely assume that the situation it was waiting for is 

now true.  

False; after this thread has been signaled (meaning the situation it was waiting for is true; e.g., a 

buffer has been produced) but BEFORE it reacquires the lock, a different (related) thread could 

acquire the lock and change the situation (e.g., consume the one buffer); thus, when the first 

thread later reacquires the lock, it must check that the situation it was waiting for is actually 

true. 

46) The call cond_signal() releases the corresponding mutex. 

False; cond_signal() doesn’t do anything with the mutex. 

47) With producer/consumer relationships and a finite-sized circular shared buffer, producing threads must 

wait until there is an empty element of the buffer. 

True; producers must have an empty buffer. 

48) To implement a thread_join operation with a semaphore, the semaphore is initialized to the value of 0 and 

the thread_exit() code calls sem_wait(). 

False; thread_join() calls sem_wait() and thread_exit() calls sem_post(). 

49) The safety property for dining philosophers states that it is not the case that there exists a philosopher who 

is hungry and his/her neighbors are not eating. 

False; this is more like the liveness property, ensuring that as much progress as possible takes 

place; the safety property ensures that nothing bad can happen (e.g., two neighboring 

philosophers are both eating). 

50) With a reader/writer lock, either multiple readers can hold the lock or a single writer can hold the lock (or 

no one holds the lock).   

True, that is a reader/writer lock. 

51) A thread can hold only one lock at a time.   

False, a thread can hold/acquire any number of locks simultaneously. 

52) Deadlock can be avoided by using semaphores instead of locks for mutual exclusion. 



False; if you use a semaphore for mutual exclusion, it has all the same properties as a traditional 

lock. 

53) Deadlock can be avoided if one thread does not acquire any locks. (REMOVED QUESTION) 

Any answer accepted because this wasn’t clear enough.  Meant to ask something like “Deadlock 

is guaranteed to not exist as long as one of the threads does not acquire any locks.”  Which 

would be false… 

  



Part 4: Straight-forward True/False about I/O Devices [2 points each] 
Designate if each statement is True (a) or False (b). 
 

54) The peripheral bus used by hard disk drives tends to provide lower bandwidth than the memory bus.  

True; busses that are further away from the main CPU tend to have lower bandwidth and the 

devices that are connected to them tend to be slower (than RAM). 

55) A device driver runs on the microcontroller that is part of the external device. 

False; the device driver is part of the OS and runs on the main CPU (not the external device). 

56) When interacting with a fast device, it can be better to spin wait than to use interrupts. 

True; if the device responds very quickly, the response might come back faster than the time 

required to context-switch to another process and back again. 

57) To use DMA, the OS must inform the device of the address for the relevant data in main memory. 

True, with direct memory access, the OS lets the device transfer the actual data. 

58) The interface that modern hard disk drives expose to the OS is that of tracks on surfaces.   

False, the interface is a simple linear array of sectors (or blocks).  The OS doesn’t know exactly 

where tracks are allocated on different surfaces. 

59) A hard disk drive can have more surfaces than platters. 

True; a disk usually has two surfaces on each platter (but could have just 1 surface per platter). 

60) A hard disk drive can have more r/w heads than surfaces. 

False; doesn’t make sense to have a r/w head with no corresponding surface to read/write from. 

61) A seek on a modern disk drive could take around 1 second. 

False; seeks are on the order of 10 ms or so (while 10ms is slow, it is two orders of magnitude 

faster than 1 second). 

62) With a 7200 RPM disk, the average rotation time for a random read is expected to be around 8.3 ms. 

Time to rotate: 1 minute / 7200 rotations à 8.3 ms / rotation.  Average rotation distance is ½.  So 

average rotation time is 4.15 ms.   

63) On a modern disk, a workload of sequential reads will be about twice as fast as a workload of random 

writes.  

False; sequential accesses are much faster than just twice that of random accesses.  For example, 

sequential performance on the Cheetah disk is about 125 MB/s.  We calculated random 

performance as about 2.5 MB/s.   

64) Track skew accounts for the amount a disk rotates while the r/w head seeks for one track. 

True; sectors on adjacent tracks are skewed so that sequential accesses can be performed 

without the disk rotating past the next sector when we move to the next track. 



65) On a disk with zones, large files that will be accessed sequentially should be placed on the outer tracks 

instead of the inner tracks. 

True; with zones, disks get better sequential bandwidth on the outer tracks. 

66) Shortest-positioning-time-first can be implemented more accurately inside of a disk than within the OS. 

True; the disk knows the exact geometry and layout of sectors to tracks and can calculate exactly 

how much rotation and seek time are required for each access; the OS can only roughly 

approximate these times.     

67) Shortest-positioning-time-first treats I/O requests from different processes fairly. 

False; SPTF doesn’t know about different processes and doesn’t try to do anything fairly. 

68) The elevator algorithm takes rotational time into account when scheduling I/O requests. 

False; the elevator algorithm optimizes seek costs while avoiding starvation; it doesn’t know 

anything about the rotation time for different requests.   

69) An anticipatory scheduler may leave the disk idle even when there are waiting I/O requests. 

True.  

 



Part 5.  Fork and Thread_Create() [4 points each] 
 
For the next two questions, assume the following code is compiled and run on a modern linux machine 
(assume any irrelevant details have been omitted): 
 
main() { 

int a = 0; 
int rc = fork(); 
a++; 
if (rc == 0) { 

rc = fork(); 
a++; 

} else {  
a++; 

} 
printf(“Hello!\n”); 
printf(“a is %d\n”, a); 

} 
 
70) Assuming	fork()	never	fails,	how	many	times	will	the	message	“Hello!\n”	be	displayed? 
a) 2	
b) 3	
c) 4	
d) 6	
e) None	of	the	above	

	
After	first	fork():	2	processes.	
Only	child	calls	second	fork()	creating	a	third	process	(call	‘grandchild’).	

 
71) What	will	be	the	largest	value	of	“a”	displayed	by	the	program? 
a) Due	to	race	conditions,	“a”	may	have	different	values	on	different	runs	of	the	program.	
b) 2	
c) 3	
d) 5	
e) None	of	the	above	

	
Parent	process:	a	=	0;	a++;	a++;	à	a=2.	
Child	process:	a=0	(after	fork());	a++;	a++;	à	a=2.	
Grandchild:	a=1	(after	fork());	a++;	à	a	=2.	

	
  



Part 5 continued. 
 
For the next two questions, assume the following code is compiled and run on a modern linux machine 
(assume any irrelevant details have been omitted): 
 
volatile int balance = 0;  
 
void *mythread(void *arg) { 
 int i; 
 for (i = 0; i < 200; i++) { 
  balance++; 
 } 
 printf(“Balance is %d\n”, balance); 

return NULL; 
} 
 
int main(int argc, char *argv[]) 

pthread_t p1, p2, p3; 
 
pthread_create(&p1, NULL, mythread, “A”);  
pthread_join(p1, NULL);  
pthread_create(&p2, NULL, mythread, “B”); 
pthread_join(p2, NULL);  
pthread_create(&p3, NULL, mythread, “C”); 
pthread_join(p3, NULL); 

 
printf(“Final Balance is %d\n”, balance); 

} 
	

72) Assuming	none	of	the	system	calls	fail,	when	thread	p1	prints	“Balance	is	%d\n”,	what	will	p1	say	is	
the	value	of	balance? 
a) Due	to	race	conditions,	“balance”	may	have	different	values	on	different	runs	of	the	program.	
b) 200	
c) 400	
d) 600	
e) None	of	the	above	

	
Note	that	none	of	the	3	created	threads,	A,	B,	and	C,	run	concurrently	with	one	another!		
The	main	thread	waits	for	one	to	finish	(using	pthread_join())	before	it	creates	the	next	
thread.		So,	there	is	concurrency	and	no	race	conditions!	

	
73) Assuming	none	of	the	system	calls	fail,	when	the	main	parent	thread	prints	“Final	Balance	is	%d\n”,	

what	will	the	parent	thread	say	is	the	value	of	balance?	
a) Due	to	race	conditions,	“balance”	may	have	different	values	on	different	runs	of	the	program.	
b) 200	
c) 400	
d) 600	
e) None	of	the	above	
	
	
	



	 	



Part	6.			Impact	of		scheduling	without	locks	(assembly	code)	[2	points	each]	
For	the	next	questions,	assume	that	two	threads	are	running	the	following	code	on	a	uniprocessor	
(this	is	the	same	looping-race-nolock.s	code	from	homework	simulations).		
	
# assumes %bx has loop count in it 
.main 
.top     
mov 2000, %ax  # get the value at the address 
add $1, %ax    # increment it 
mov %ax, 2000  # store it back 
 
# see if we're still looping 
sub  $1, %bx 
test $0, %bx 
jgt .top         
 
halt 
 
This	code	is	incrementing	a	variable	(e.g.,	a	shared	balance)	many	times	in	a	loop.		Assume	that	the	
%bx	register	begins	with	the	value	3,	so	that	each	thread	performs	the	loop	3	times.		Assume	the	
code	is	loaded	at	address	1000	and	that	the	memory	address	2000	originally	contains	the	value	0.		
Assume	that	the	scheduler	runs	the	two	threads	producing	the	following	order	of	instructions	(the	
first	column	shows	the	address	of	the	executed	instruction).		The	code	continues	on	the	next	page.	
 
For	each	of	the	lines	designated	below	with	a	question	numbered	74-79,	determine	the	
contents	of	the	memory	address	2000	AFTER	that	assembly	instruction	executes.	
a) 1	
b) 2	
c) 3	
d) 4	
e) None	of	the	above	
	
 
Thread 0                Thread 1    ax_t2 ax_t1 
1000 mov 2000, %ax      0 ? 
1001 add $1, %ax      1 ? 
1002 mov %ax, 2000      74)	Contents	of	addr	2000?	1	
------ Interrupt ------  ------ Interrupt ------ 
                         1000 mov 2000, %ax  1   1 
                         1001 add $1, %ax  1 2 
                         1002 mov %ax, 2000  75)	Contents	of	addr	2000?	2 
                         1003 sub  $1, %bx 
------ Interrupt ------  ------ Interrupt ------ 
1003 sub  $1, %bx 
1004 test $0, %bx 
1005 jgt .top 
------ Interrupt ------  ------ Interrupt ------ 
                         1004 test $0, %bx 
                         1005 jgt .top 
                         1000 mov 2000, %ax  1 2 
                         1001 add $1, %ax  1 3 
------ Interrupt ------  ------ Interrupt ------ 
1000 mov 2000, %ax      2 3 
1001 add $1, %ax      3 3 



1002 mov %ax, 2000      76)	Contents	of	addr	2000?	3 
1003 sub  $1, %bx 
------ Interrupt ------  ------ Interrupt ------ 
                         1002 mov %ax, 2000  77)	Contents	of	addr	2000?	3 
                         1003 sub  $1, %bx 
                         1004 test $0, %bx 
------ Interrupt ------  ------ Interrupt ------ 
1004 test $0, %bx 
1005 jgt .top 
1000 mov 2000, %ax      3 3 
------ Interrupt ------  ------ Interrupt ------ 
                         1005 jgt .top 
------ Interrupt ------  ------ Interrupt ------ 
1001 add $1, %ax      4 3 
1002 mov %ax, 2000      78)	Contents	of	addr	2000?	4 
1003 sub  $1, %bx 
1004 test $0, %bx 
------ Interrupt ------  ------ Interrupt ------ 
                         1000 mov 2000, %ax  4 4 
                         1001 add $1, %ax  4 5 
                         1002 mov %ax, 2000  79)	Contents	of	addr	2000?	5 
------ Interrupt ------  ------ Interrupt ------ 
1005 jgt .top 
1006 halt 
----- Halt;Switch -----  ----- Halt;Switch ----- 
------ Interrupt ------  ------ Interrupt ------ 
                         1003 sub  $1, %bx 
                         1004 test $0, %bx 
                         1005 jgt .top 
                         1006 halt 
	
	

80) Assume	looping-race-nolock.s is	run	with	an	unknown	scheduler	and	some	random	
interleaving	of	instructions	occurs	across	threads	1	and	2	(i.e.,	not	just	the	interleaving	shown	
above).		For	an	arbitrary,	unknown	schedule,	what	contents	of	the	memory	address	2000	are	
possible	when	the	two	threads	are	done	and	the	program	is	completed?	
a) Any	values	>=	0	and	<=	6	
b) Any	values	>=	1	and	<=	6	
c) Any	values	>=	3	and	<=	6	
d) Any	values	>=	4	and	<=	6	
e) None	of	the	above	

	
Race	conditions	don’t	cause	memory	address	2000	to	hold	any	random	garbage.		The	race	
conditions	that	can	happen	in	this	program	will	not	lead	to	any	values	greater	than	6,	
since	there	are	only	6	increments	from	0.		However,	some	of	the	increments	across	the	
two	threads	can	be	missed	by	the	other.	
	
What	is	the	maximum	number	of	increments	by	one	thread	that	could	be	missed?		
Mistakenly,	credit	was	given	for	Option	c,	incorrectly	assuming	that	the	worst	case	occurs	
when	one	thread	copies	the	initial	value	of	0	into	ax,	then	thread	2	runs	to	completion,	
incrementing	the	value	to	3;	then,	the	first	thread	continues	back	with	the	incorrect	value	
of	0,	and	increments	it	to	3.			
	



However,	the	worst	case	actually	occurs	when	both	threads	copy	the	initial	value	of	0	into	
ax,	then	one	thread	does	all	iterations	except	for	the	last,	then	the	second	thread	does	one	
iteration,	moving	the	value	of	1	to	memory;	at	this	point,	the	first	thread	grabs	the	value	of	
1	into	ax,	the	second	thread	does	all	of	its	iterations	and	moves	its	value	to	memory,	but	
then	the	first	thread	completes	its	last	iteration	(in	which	it	adds	one	to	1	and	moves	the	
value	of	2	to	memory).		Thus,	values	>=2	and	<=	6	are	possible	(E).		Tricky!			
	



Part	6:	Wait-Free	Algorithms	[12	total	points]	
	
Your	project	partner	has	written	the	following	correct	implementation	of	insert(int val)	using	
traditional	locks	for	mutual	exclusion:	
	
typedef struct {  
 int val; 
 node_t *next;  
} node_t;  
 
node_t *head; // assume points to an existing list 
void insert (int val) { 
 node_t *n = Malloc(sizeof(*n)); 
 n->val = val; 
 lock(&m); 
 n->next = head; 
 head = n; 
 unlock(&m); 
} 
 
You	decide	you	would	like	to	replace	the	locks	with	calls	to	the	atomic	hardware	instruction	
CmpAndSwap(int *addr, int expect, int new),	which	returns	0	on	failure	and	1	on	
success.			The	exact	behavior	of	atomic	CmpAndSwap()	is	defined	as	in	class.	
	
You	know	that	insert()modified	to	use	CmpAndSwap()	looks	something	like	the	following:	
	
node_t *head; // assume points to an existing list 
void insert (int val) { 
 node_t *n = Malloc(sizeof(*n)); 
 n->val = val; 
 do { 
  n->next = head; 
 } while (???); 
} 
 
Which	of	the	following	are	correct	replacements	for	???	in	the	code	above?			
For	questions	81-88,	mark	the	suggested	replacement	for	???		as	Possible	(a)	or	Not	Possible	
(b).	
 

81)  CmpAndSwap(&n->next, head, n) 
82)  !CmpAndSwap(&n->next, head, n) 
83)  CmpAndSwap(&n->next, n, head) 
84)  !CmpAndSwap(&n->next, n, head) 
85)  CmpAndSwap(&head, n->next, n) 
86)  !CmpAndSwap(&head, n->next, n) 
87)  CmpAndSwap(&head, n, n->next) 
88)  !CmpAndSwap(&head, n, n->next) 

 
 



Answer	Intuition:	need	a	solution	that	ensures	n->next	still	equals	head,	(which	means	a	
different	thread	didn’t	race	in	and	change	the	value	of	head),	while	atomically	updating	
head	to	point	to	n.			
	
The	first	4	solutions	all	set	n->next	equal	to	something,	whereas	we	want	to	set	head	
equal	to	something.	
	
The	last	2	solutions	set	head	equal	to	n->next,	whereas	we	need	to	set	it	to	n.	
	
Finally,	we	need	!CmpAndSwap()	so	the	while	loop	continues	while	we	failed	(and	another	
thread	changed	the	value	of	head).	
 
  

				
	
	
	 	



Part	7:	Lock	implementation	with	blocked	threads	[21	total	points]	
Your	project	partner	started	to	write	the	code	for	implementing	lock acquire()	and	lock 
release(),	but	the	code	isn’t	quite	working	yet.		Your	job	is	to	finish	it	up.		The	following	code	is	
very	similar	to	the	code	in	lecture,	except	it	has	a	problem.	
typedef struct { 
 bool lock = false; 
 bool guard = false; 
 queue_t q; 
} LockT; 
void acquire(LockT *l) {    // A0 
 while (TAS(&l->guard, true));    // A1 
 if (l->lock) {     // A2 
  qadd(l->q, tid);    // A3 
  setpark(); // notify of plan // A4 
  park(); // unless unpark()   // A5 
 } else {      // A6 
  l->lock = true;    // A7 
 }       // A8 
} 
void release(LockT *l) { 
 while (TAS(&l->guard, true)); 
 if (qempty(l->q)) l->lock=false; 
 else unpark(qremove(l->q));  
 l->guard = false; 
} 
	
The	problem		is	that	acquire()	does	not	set	l->guard=false.		Where	in	the	code	could	the	
statement	l->guard=false	be	correctly	placed?			Note	that	the	statement	may	need,	or	may	be	
able,	to	be	placed	in	multiple	locations.		For	questions	89-95,	mark	each	location	as	Possible	(a)	
or	Not	Possible	(b)	to	provide	a	correct	implementation	for	both	lock	acquire()	and	release().	

89) Between	A0	and	A1	
b. 	Not	Possible.		This	would	wrongly	set	guard	to	false	even	if	another	thread	currently	had	

the	guard	lock.	
90) Between	A1	and	A2	

b. 		Not	possible.		This	would	make	the	critical	section	have	nothing	in	it.	
91) Between	A2	and	A3	

b.		Not	possible.		Before	thread	gets	chance	to	add	self	to	queue,	thread	releasing	lock	could	
mistakenly	think	queue	is	empty.				

92) Between	A3	and	A4	
b.		Not	possible.		Before	we	call	setpark(),	thread	calling	release()	could	try	to	unpark	us	
and	we	would	then	lose	that	unpark	signal	and	be	stuck	on	park()	forever.	

93) Between	A4	and	A5	
a.	Possible.		Correct	location.		

94) Between	A6	and	A7	
b.		Not	possible.		Releases	guard	before	lock	is	set	to	true;	thus,	another	thread	calling	
acquire()	could	see	lock	hasn’t	been	set	yet	and	both	would	incorrectly	acquire	lock.		

95) Between	A7	and	A8	
a.	Possible.		Correct	location;	critical	section	includes	test	of	lock	and	set	of	lock	to	true.	

	
Although	it	was	correct,	you	do	not	like	the	structure	of	two	lines	of	code	in release(): 

if (qempty(l->q)) l->lock=false; 



 else unpark(qremove(l->q));  
and	you	decide	to	restructure	those	two	lines	to:	

if (!qempty(l->q)) unpark(qremove(l->q));  
l->lock=false; 

	
96)	What	additional	changes	do	you	now	need	to	make	in	order	for	all	the	code	to	be	correct?	
	 a)	No	other	changes	are	needed	

b)	Place	l->lock=true	between	A3	and	A4	
	 c)	Place	l->lock=true	between	line	A4	and	A5	
	 d)	Place	l->lock=true	after	line	A5	
	 e)	Other	changes	beyond	options	b,	c,	and	d	are	needed	to	make	the	code	correct	

	
This	is	a	little	tricky.		This	modification	is	setting	lock	to	false	in	the	(new)	situation	where	
we	are	handing	off	the	lock	to	the	thread	we	are	unparking.		So,	you	might	think	that	
setting	lock	to	true	after	line	A5	would	work,	but	it	won’t	work	because	there	is	a	race	
condition.			
	
We	can’t	guarantee	after	we	unpark	the	thread	(say	thread	A)	that	it	will	be	the	next	
thread	scheduled;	it	is	possible	thread	C	calls	acquire()	right	at	that	point,	sees	that	lock	is	
false,	acquires	the	lock,	and	enters	the	critical	section.		The	problem	is	that	when	thread	A	
is	then	scheduled,	it	doesn’t	recheck	the	condition	(i.e.,	that	lock	is	false)	and	it	blindly	
believes	it	should	be	able	to	get	the	lock	and	sets	lock	to	true.	
	

Part	8.			Scheduling	multi-threaded	C	code		[2	points	each]	
The	following	problem	ask	you	to	step	through	C	code	according	to	a	specific	schedule	of	threads.			
To	understand	how	the	scheduler	switches	between	threads,	you	must	understand	the	following	
model.		This	is	identical	to	what	was	presented	in	previous	exams	and	examples.	
	
Imagine	you	have	two	threads,	T	and	S.		The	scheduler	runs	T	and	S	such	that	each	statement	in	the	
C-language	language	code	(or	line	of	code	as	written	in	our	examples)	is	atomic.		We	tell	you	which	
thread	was	scheduled	by	showing	you	either	a	“T”	or	a	“S”	to	designate	that	one	line	of	C-code	was	
scheduled	by	the	corresponding	thread;	for	example,	TTTSS	means	that	3	lines	were	run	from	thread	
T	followed	by	2	lines	from	thread	S.					
	
Assume	the	test	for	a	while()	loop	or	an	if()	statement	corresponds	to	one	line	of	C-code.				
		
Function	calls	that	may	have	to	wait	for	something	to	happen	(e.g.,	sem_wait())	are	treated	specially.			
	
For	sem_wait(),	assume	that	the	function	call	and	return	of	sem_wait()	requires	exactly	one	
scheduling	interval	if	the	calling	process	does	not	need	to	wait	(i.e.,	it	completes	with	just	“T”).	If	the	
semaphore	requires	some	other	operation	to	occur	in	order	for	sem_wait()	to	complete,		then	
assume	the	call	spin-waits	until	that	other	operation	occurs	(e.g.,	you	may	see	a	long	instruction	
stream	“TTTTTTT”	that	causes	no	progress	for	this	thread);	once	the	other	operation	occurs,	the	
next	scheduling	of	the	waiting		thread	causes	that	thread	to	finish	the	call	to	sem_wait()	(i.e.,	it	
completes	then	with	just	“T”).	
	
Consider	the	following	code	for	implementing	rw	locks;	it	continues	on	the	next	page.		It	is	identical	
to	the	code	presented	in	lecture.	
	
typedef struct _rwlock_t {  



    sem_t lock;  
   sem_t writelock;  
    int readers;  
} rwlock_t;  
  
void rwlock_init(rwlock_t *rw) { 

rw->readers = 0;  
sem_init(&rw->lock, ???);  
sem_init(&rw->writelock, ???);  

} 
 
  



void rwlock_acquire_readlock(rwlock_t *rw) {  
sem_wait(&rw->lock);                        // AR1 
rw->readers++;       // AR2 
if (rw->readers == 1)      // AR3 

sem_wait(&rw->writelock);     // AR4 
sem_post(&rw->lock);      // AR5 

}  
 
// 1 line of Critical Section C1 after acquire 
 
void rwlock_release_readlock(rwlock_t *rw) {  

sem_wait(&rw->lock);      // RR1 
rw->readers--;       // RR2 
if (rw->readers == 0)      // RR3 

sem_post(&rw->writelock);     // RR4 
sem_post(&rw->lock);      // RR5 

}  
 
rwlock_acquire_writelock(rwlock_t *rw){sem_wait(&rw->writelock);}// AW1 
 
// 1 line of Critical Section C1 after acquire 
 
rwlock_release_writelock(rwlock_t *rw){sem_post(&rw->writelock);}// RW1 
 
Assume		rwlock_init()	has	already	been	called.		Assume	there	are	3	threads,	W,	R,	and	S	that	
want	to	execute	the	following	requests:	
	
W:	rwlock_acquire_writelock(rw);	1	line	of	critical	section	C1	(not	shown);	rwlock_release_writelock(rw);	
R:	rwlock_acquire_readlock(rw);	1	line	of	critical	section	C1	(not	shown);	rwlock_release_readlock(rw);	
S:	rwlock_acquire_readlock(rw);	1	line	of	critical	section	C1	(not	shown);	rwlock_release_readlock(rw);	
	
For	example,	after	thread	R	completes	rwlock_acquire_readlock(rw)	(specifically,	after	it	
finishes	line	AR5),	it	will	execute	in	its	critical	section,	executing	one	line,	C1;	it	will	then	call	
rwlock_release_readlock(rs)	(and	the	next	line	it	will	execute	will	be	RR1).	
	
The	exact	ordering	of	these	operations	across	W,	R,	and	S	will	depend	upon	the	scheduler	as	
described	below.	
	

97) To	begin,	how	should	the	semaphore	rw->lock	be	initialized	in	the	statement		
sem_init(&rw->lock, ???);	
a) -1	
b) 0	
c) 1		
d) 2	
e) None	of	the	above	
	

98) How	should	rw->writelock	be	initialized	in	sem_init(&rw->writelock, ???);	
a) -1	
b) 0	
c) 1	
d) 2	
e) None	of	the	above	



	
	

99) Now	let	us	consider	what	happens	when	the	scheduler	starts	running	these	three	threads.		Assume	
the	scheduler	runs	one	line	from	W;	that	is,	W	calls	sem_wait()	within	rwlock_acquire_writelock().		
After	the	instruction	stream	“W”	(i.e.,	after	the	scheduler	runs	one	line),	which	line	of	W’s	will	be	run	
when	W	is	scheduled	again?	
a) AW1	(hint:	here	if	the	condition	for	sem_wait(&rw->writelock)	was	not	satisfied)	
b) C1	(hint:	here	if	the	condition	for	sem_wait(&rw->writelock)	was	met)	
c) RW1	(hint:	don’t	know	how	this	would	happen)	
d) Code	byond	RW1	(hint:	don’t	know	how	this	would	happen)	
e) Nothing	else	makes	sense	for	W	
	

100) Assume	the	scheduler	continues	on	with	RRRR	(i.e.,	the	scheduler	runs	4	lines	for	one	of	the	
reader	threads,	and	the	full	instruction	stream	is	WRRRR).		Which	line	will	R	execute	when	R	is	
scheduled	again?	
a) AR1	
b) AR3	
c) AR4	
d) AR5	
e) None	of	the	above	
	
Runs	following	code;	stuck	waiting	on	sem_wait(writelock);	
sem_wait(&rw->lock);                        // AR1 
rw->readers++;       // AR2 
if (rw->readers == 1)      // AR3 

sem_wait(&rw->writelock);     // AR4 
	

	
101) Assume	the	scheduler	continues	on	with	SSSS	(i.e.,	the	scheduler	runs	4	lines	for	another	reader	

thread,	S,	and	the	full	instruction	stream	is	WRRRRSSSS).		Which	line	will	S	execute	when	S	is	
scheduled	again?	
a) AR1	–	stuck	on	sem_wait(&rw->lock)	held	by	R	
b) AR3	
c) AR4	
d) AR5	
e) None	of	the	above	
	

102) Assume	the	scheduler	continues	on	with	WWW	(i.e.,	the	scheduler	runs	3	lines	for	the	original	
write	thread,	and	the	full	instruction	stream	is	WRRRRSSSSWWW).		Which	line	will	W	execute	when	
W	is	scheduled	again?	
a) AW1	
b) C1	
c) RW1	
d) Code	beyond	RW1	
e) Nothing	else	makes	sense	

	
Completes	C1,	releases	its	write	lock	(which	posts	to	writelock),	and	continues	on	beyond	
RW1	

	
103) Assume	the	scheduler	continues	on	with	SSSS	(i.e.,	the	scheduler	runs	4	lines	for	reader	thread,	



S,	and	the	full	instruction	stream	is	WRRRRSSSSWWWSSSS).		Which	line	will	S	execute	when	S	is	
scheduled	again?	
a) AR1	–	S	is	still	stuck	waiting	on	sem_wait(&rw->lock)	held	by	R	
b) AR3	
c) AR4	
d) AR5	
e) None	of	the	above	
	

104) Assume	the	scheduler	continues	on	with	RRRRR	(i.e.,	the	scheduler	runs	5	lines	for	reader	
thread,	R,	and	the	full	instruction	stream	is	WRRRRSSSSWWWSSSSRRRRR).		Which	line	will	R	
execute	when	R	is	scheduled	again?	
a) AR1	
b) AR3	
c) AR4	
d) AR5	
e) None	of	the	above	

	
Finishes	acquiring	the	read	lock:	

sem_wait(&rw->writelock);     // AR4 
sem_post(&rw->lock);      // AR5 
 
1 line of critical section  
 
then releases read lock: 
sem_wait(&rw->lock);      // RR1 
rw->readers--;       // RR2 
 
Next line will be RR3 

	
	

105) Assume	the	scheduler	continues	on	with	SS	(i.e.,	the	scheduler	runs	2	lines	for	reader	thread,	S,	
and	the	full	instruction	stream	is	WRRRRSSSSWWWSSSSRRRRRSS).		Which	line	will	S	execute	when	
S	is	scheduled	again?	
a) AR1	–	Still	stuck	on	lock	held	by	R	
b) AR3	
c) AR4	
d) AR5	
e) None	of	the	above	

	
106) Assume	the	scheduler	continues	on	with	RRR	(i.e.,	the	scheduler	runs	3	lines	for	reader	thread,		

R,	and	the	full	instruction	stream	is	WRRRRSSSSWWWSSSSRRRRRSSRRR).		Which	line	will	R	
execute	when	R	is	scheduled	again?	
a) RR1	
b) RR2	
c) RR3	
d) RR4	
e) None	of	the	above	
	

if (rw->readers == 0)      // RR3 
	



sem_post(&rw->writelock);     // RR4 
sem_post(&rw->lock);      // RR5 
 
Next will be 1 line of critical section 
 

	
107) Assume	the	scheduler	continues	on	with	SSSS	(i.e.,	the	scheduler	runs	4	lines	for	reader	thread,		

S,	and	the	full	instruction	stream	is	WRRRRSSSSWWWSSSSRRRRRSSRRRSSSS).		Which	line	will	S	
execute	when	S	is	scheduled	again?	
a) RR1	
b) RR2	
c) RR3	
d) RR4	
e) None	of	the	above	–	AR5	

	
S	finally	gets	to	acquire	the	lock	and	complete	statement	AR1.		Executes	these	4	
statements:	

sem_wait(&rw->lock);                        // AR1 
rw->readers++;       // AR2 
if (rw->readers == 1)      // AR3 

sem_wait(&rw->writelock);     // AR4 
 

Then will execute AR5 next time. 
	

	
Congratulations	on	finishing!		See	you	in	lecture	tomorrow	to	talk	about	file	systems!	
	
	
	
	
	
	
	

 


