
10/4/16

1

Exam 1: Review
Questions answered in this lecture:

What are some useful things to remember about virtualization?

UNIVERSITY of WISCONSIN-MADISON
Computer Sciences Department

CS 537
Introduction to Operating Systems

Andrea C. Arpaci-Dusseau
Remzi H. Arpaci-Dusseau

Announcements
P1: Graded in Learn@UW; If major surprises see your TA (or 537-
help@cs)

P2:
• Pace: Good to have finished Shell (Part A) by now

• Spend more time on Scheduler (Part B)
• Purpose of graph is to demonstrate all aspects of scheduler are working correctly

Exam
• Two hours – 7:15 – 9:15 pm in 272 Bascom Hall
• Bring #2 pencils and student id
• All multiple choice

• Covers everything so far in course:
• Lectures + Reading + Homework + Project 1
• Chapters 1 - 24, excluding 10 (Multiprocessor Scheduling), 17 (Free-Space

Management), and 23 (VAX/VMS Virtual Memory System)
• Look over sample exams

10/4/16

2

Review: Easy Piece 1

Virtualization

CPU
Process

Memory
Address Space

Context Switch

Schedulers

Segmentation

Paging

TLBs

Multilevel

Swapping

Dynamic Relocation

What questions did
you ask?

10/4/16

3

RAM

Process P

P can only see its own memory because of user mode
(other areas, including kernel, are hidden)

How are system Calls
Performed?

OS

P wants to call read() but no way to call it directly

OS is not part of P’s address space

RAM

Process P

movl $6, %eax; int $64

System Call

read():

OS

10/4/16

4

RAM

Process P

movl $6, %eax; int $64

trap-table indexsyscall-table index

System Call

OS
64th entry

RAM

Process P

movl $6, %eax; int $64

Kernel mode: we can do anything!

trap-table indexsyscall-table index

SYSTEM CALL

OS
64th entry

10/4/16

5

RAM

Process P

movl $6, %eax; int $64

sy
sc

al
l

sy
s_

re
ad

trap-table indexsyscall-table index

System Call

Follow entries to correct system call code

64th entry 6th entry

RAM

Process P

movl $6, %eax; int $64

sy
sc

al
l

sy
s_

re
ad

buf

trap-table indexsyscall-table index

System Call

Kernel can access user memory to fill in user buffer
return-from-trap at end to return to Process P

10/4/16

6

HW, OS, or User Process?

Process API:
HW in Book

Write a program using fork(). The child process should print “hello”; the
parent process should print “goodbye”. You should try to ensure that the child
process always prints first; can you do this without calling wait() in the parent?

• Waitpid, sleep, other synchronization primitives such as condition variables and
semaphores (next topic!)

Is it possible for child process to wait for a parent or does it always have to be
the other way around?

• Wait() and waitpid() apply to children processes

Typical workflow of creating a new process is to call exec in child after
forking. Would there ever be a reason to create a child and call exec in the
parent instead?

• No good reason I can think of

10/4/16

7

Process API

If a parent and a child can access the same file descriptor, why
does closing a file descriptor in a child not effect the parent
process? Is it just because the file descriptor table is unique for
each, but each entry references the same file?

Multi-level feedback
Queue (MLFQ) Rules

Rule 1: If priority(A) > Priority(B),
A runs

Rule 2: If priority(A) == Priority(B),
A & B run in RR

More rules:
Rule 3: Processes start at top priority
Rule 4: If job uses whole slice, demote process
(longer time slices at lower priorities)

A

B

C

Q3

Q2

Q1

Q0 D

10/4/16

8

0 5 10 15 20

Job that performs I/O
Periodically

Q3

Q2

Q1

Q0

Stays in Q1 queue as long as doesn’t use entire Q1 timeslice

Prevent Gaming

Problem: High priority job could trick scheduler and get more
CPU by performing I/O right before time-slice ends

Fix: Account for process’s total run time at priority level
downgrade when exceed threshold

10/4/16

9

How are virtual
Addresses generated?

• What do addresses look like from the program’s perspective?
(from the user process’s perspective)

• Generated by compiler and contents of registers

Quiz: Memory Accesses?

0x10: movl 0x8(%rbp), %edi
0x13: addl $0x3, %edi
0x19: movl %edi, 0x8(%rbp)

1) Fetch instruction at addr 0x10
Exec:

2) load from addr 0x208

3) Fetch instruction at addr 0x13
Exec:

no memory access

4) Fetch instruction at addr 0x19
Exec:

5) store to addr 0x208

Initial %rip = 0x10
%rbp = 0x200

%rbp is the base pointer:
points to base of current stack frame

%rip is instruction pointer (or program counter, PC)

Memory Accesses to what
virtual addresses?

10/4/16

10

Quiz: Address Format

Page Size Low Bits (offset)

16 bytes 4

1 KB 10

1 MB 20

512 bytes 9

4 KB 12

Given known page size, how many bits are needed in address to specify offset in page?

Assuming byte addressable architecture

Quiz: Address Format

Page Size Low Bits
(offset)

Virt Addr Bits High Bits
(vpn)

16 bytes 4 10 6

1 KB 10 20 10

1 MB 20 32 12

512 bytes 9 16 5

4 KB 12 32 20

Given number of bits in virtual address and bits for offset,
how many bits for virtual page number?

Correct?

7

10/4/16

11

Quiz: Address Format

Page Size Low Bits
(offset)

Virt Addr Bits High Bits
(vpn)

16 bytes 4 10 6

Virt Pages

1 KB 10 20 10

1 MB 20 32 12

512 bytes 9 16 7

4 KB 12 32 20

Given number of bits for vpn,
how many virtual pages can there be in an address space?

64

1 K

4 K

128

1 M

Tells you how many entries are needed in page tables!

VirtUAL => Physical PAGE
Mapping

How should OS translate VPN to PPN?

For segmentation, OS used a formula (e.g., phys addr = virt_offset + base_reg)

For paging, OS needs more general mapping mechanism

What data structure is good?

0 1 0 1 0 1

VPN offset

1 1 0 1 0 11 0

PPN offset

Addr Mapper

Big array: pagetable

Number of bits in
virtual address

format does not need
to equal

number of bits in
physical address

format

10/4/16

12

Where Are Pagetables
Stored?

How big is a typical page table?
- assume 32-bit address space
- assume 4 KB pages
- assume 4 byte page table entries (PTEs)

Final answer: 2 ̂ (32 - log(4KB)) * 4 = 4 MB
• Page table size = Num entries * size of each entry
• Num entries = num virtual pages = 2^(bits for vpn)
• Bits for vpn = 32– number of bits for page offset

= 32 – lg(4KB) = 32 – 12 = 20
• Num entries = 2^20 = 1 MB
• Page table size = Num entries * 4 bytes = 4 MB

Implication: Store each page table in memory
• Hardware finds page table base with register (e.g., CR3 on x86)

What happens on a context-switch?
• Change contents of page table base register to newly scheduled process
• Save old page table base register in PCB of descheduled process

QUIZ: How big are page
Tables?

1. PTE’s are 2 bytes, and 32 possible virtual page numbers

2. PTE’s are 2 bytes, virtual addrs are 24 bits, pages are 16 bytes

3. PTE’s are 4 bytes, virtual addrs are 32 bits, and pages are 4 KB

4. PTE’s are 4 bytes, virtual addrs are 64 bits, and pages are 4 KB

32 * 2 bytes = 64 bytes

2 bytes * 2^(24 – lg 16) = 2^21 bytes (2 MB)

4 bytes * 2^(32 – lg 4K) = 2^22 bytes (4 MB)

4 bytes * 2^(64 – lg 4K) = 2^54 bytes

How big is each page table?

10/4/16

13

3) Multilevel
Page Tables

Goal: Allow each page table to be allocated non-contiguously

Idea: Page the page tables
• Creates multiple levels of page tables; outer level “page directory”
• Only allocate page tables for pages in use
• Used in x86 architectures (hardware can walk known structure)

outer page
(8 bits)

inner page
(10 bits)

page offset (12 bits)

30-bit address:

base of page directory

Quiz: Multilevel

PPN
0x3

-
-
-
-
-
-
-
-
-
-
-
-
-

0x92

valid
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1

page directory
PPN
0x10
0x23

-
-

0x80
0x59

-
-
-
-
-
-
-
-

0x25

valid
1
1
0
0
1
1
0
0
0
0
0
0
0
0
1

page of PT (@PPN:0x3)
PPN

-
-
-
-
-
-
-
-
-
-
-
-
-

0x55
0x45

valid
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1

page of PT (@PPN:0x92)

translate 0xfffff

outer page
(4 bits)

inner page
(4 bits)

page offset (12 bits)

20-bit address:

translate 0x0ffff

translate 0x00000

0x45fff

0x10000

0x25fff

10/4/16

14

Problem with 2 levels?

Problem: page directories (outer level) may not fit in a page

Solution:
• Split page directories into pieces
• Use another page dir to refer to the page dir pieces.

PT idx OFFSETPD idx 1

VPN

PD idx 0

How large is virtual address space with 4 KB pages, 4 byte PTEs,
each page table fits in page given 1, 2, 3 levels?

4KB / 4 bytes à 1K entries per level

outer page?
inner page
(10 bits)

page offset (12 bits)

64-bit address:

TLB Question

Why are fully associative TLBs less collision prone than the non-fully associative
TLB?

What does collision actually mean over here?

10/4/16

15

Translation
lookaside buffer (TLB)

TLB: Translation Lookaside Buffer

(this is special hardware!)

CPU RAM

memory interconnect

PT

Translation
Cache Some popular entries

TLB Example

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

A
0
1
2
3
4
5
6
7

A B
0
1
2
3

A B C D

A B C D E L M N O P

Direct mapped

Fully associative

Two-­way set associative

Four-­way set associative

30 (decimal) 0xa6
TLB Entry

Various ways to organize a 16-­entry TLB (artificially small)

Lookup
• Calculate set (tag % num_sets)
• Search for tag within resulting set

30 0xa6

30 % 16 = ?

30 % 8 = ?

30 0xa6

46 0xbe30 0xa6

46 0xbe 0x21106 0xf1

30 0xa6

30 % 4 = ?

10/4/16

16

TLB Associativity Trade-offs

Higher associativity
+ Better utilization, fewer collisions (or conflicts)
– Slower
– More hardware

Lower associativity
+ Fast
+ Simple, less hardware
– Greater chance of collisions (or conflicts)

TLBs usually fully associative

Present vs Valid Bit

• Virtual memory when page is not allocated in physical
memory (RAM); instead on disk

• Why is a present bit needed? Why not just use valid bit?

10/4/16

17

Virtual Address Space
Mechanisms

Each page in virtual address space maps to one of three:
• Nothing (error): Free
• Physical main memory: Small, fast, expensive
• Disk (persistent storage): Large, slow, cheap

Extend page tables with an extra bit: present
• permissions (r/w), valid, present
• Page is not allocated or mapped (not valid)

• Segmentation fault
• Page in memory: present bit set in PTE, hold PPN
• Page on disk: present bit cleared

• PTE points to block address on disk
• Causes trap into OS when page is referenced
• Trap: page fault

Present Bit

PFN valid prot present
10 1 r-x 1
- 0 - -
23 1 rw- 0

28 1 rw- 0
4 1 rw- 1

- 0 - -
- 0 - -
- 0 - -
- 0 - -
- 0 - -
- 0 - -
- 0 - -
- 0 - -

Phys Memory

Disk

16 1 rw- 1

What if access vpn 0xb?

10/4/16

18

Swapping
Assume: when process starts, all the code that runs has to be loaded in from the
disk due to page faults occurring, is this correct?

• Yes, with pure demand paging

Why in diagram 21.1 is proc0's VPN 0 page in memory but not on the disk?
Wouldn't proc0's VPN 0 page still be on the disk except it was also copied into
main memory?

Good luck!

• TAs may review for exam more in discussion section or might go over
Project material
• Use form if you care!

