CS 537

UNIVERSITY of WISCONSIN-MADISON
Computer Sciences Department

Andrea C. Arpaci-Dusseau

Introduction to Operating Systems Remzi H. Arpaci-Dusseau

EXAM 3: REVIEW

ANNOUNCEMENTS

12/16/16

12/16/16

REVIEW: EASY PIECE 1

REVIEW: EASY PIECE 2

12/16/16

REVIEW: EASY PIECE 3

WHAT QUESTIONS DID
YOU ASK?

12/16/16

DISK TERMINOLOGY

RAIDS

12/16/16

RAID METRICS

RAID-O: STRIPING
4 DISKS

12/16/16

RAID-O: ANALYSIS

RAID-1I: MIRRORING

12/16/16

SAMPLE: RAID.PY

J/raid.py-n5-L1-R10-D 8 ¢

READ from oddr:8 size:4996
[disk @, offset 2]

READ from oddr:4 size:4096
[disk 1, offset 1]

READ from addr:5 size:4096
[disk 3, offset 1]

READ from addr:7 size:4996
[disk 7, offset 1]

READ from addr:4 size:4096
[disk 1, offset 1]

What is capacity? N/2*C
How many disks can fail? 1 (or maybe N/2)
Latency (read, write)? D
N := number of disks Disk 0 Disk 1 Disk 2 Disk 4
C := capacity of 1 disk 0 0 1 1
S := sequential throughput of 1 disk 2% 2 %) 3
R := random throughput of 1 disk 4 4 5 5
D :=latency of one small I/O operation ¢ 6 7 7

12/16/16

RAID-I: THROUGHPUT

UPDATING PARITY: XOR

12/16/16

RAID-4 PARITY DISK

RAID-4: ANALYSIS

12/16/16

RAID-4: THROUGHPUT

RAID-5

10

12/16/16

LEFT-SYMMETRIC RAID-5

RAID-5: ANALYSIS

11

12/16/16

RAID-5: THROUGHPUT

FILE API

12

12/16/16

RENAME

FILE DESCRIPTORS

13

STEPS TO
CREATING/WRITING FILES

create /foo/bar

data inode root foo bar root foo
bitmap bitmap | inode inode inode | data data
read
read
read
read
read
write
read
write
write
write

Update inode (e.g., size) and data for directory

12/16/16

14

append to /foo/bar

[bar inode in mem)]

data inode root foo bar root foo bar
bitmap bitmap | inode inode inode | data data data
read
read
write
write
write

SAMPLE HW: VSFES

Use this tocl, wafs.py, %o study how file system state changes as various
eperations take place. The file system begins in an empty state, with just a
root girectory. As the simwlation takes place, various operations are
performed, thus slowly changing the en-disk state of the file system,

The possible operaticons are:

- mkoirl) - creates » new directory

- creat|) - creates » new (empty| file

= opeal], write(), clese() - appends a bleck te a file
- Linkl(]) - creates a3 hard link to a file

- unlink{) - unlinks & file (removing it if Lliskcnt==@)

To ungerstand how this homework functions, you must first understand how the
en-disk state of this file systes i3 represented. The state of the file
system Ls shown By printing the contents of four different datd structures:

inode bitmap « indicates which inodes are allocated
inodes - table of inodes and thelr contents

date Ditmap -~ indicates which datas Slocks are allocates
data = indicates centents of data blocks

The bitrmaps should be fairly straightforward to understand, with a 3
indicating that the corresponding inede or data block is allocated, and a @
indicating sald inode or gata block is free,

12/16/16

15

12/16/16

MOTIVATION FOR
JOURNALING

BASIC JOURNALING

16

12/16/16

NEW LAYOUT

NEW LAYOUT

17

12/16/16

NEW LAYOUT

NEW LAYOUT

18

12/16/16

NEW LAYOUT

NEW LAYOUT

19

12/16/16

JOURNALING:
STATES AFTER CRASH

LES

20

LES IMAP

Machine A

int main(...) {
int x = foo(”hello”);

int foo(char *msg) {
send msg to B
recv msg from B

RPC

Machine B

int foo(char *msg) {

void foo_listener() {
while(1) {

recv, call foo

12/16/16

21

12/16/16

RAW MESSAGES: UDP

RELIABLE MESSAGES:
LAYERING STRATEGY

22

12/16/16

NES SUMMARY

AFS SUMMARY

23

12/16/16

HOMEWORK: AFS

This program, afs.py, allows you to experiment with the cache consistency
Behavior of the Andrew File Systes (AFSI. The program generates randes client
traces {of file cpema, reads, writes, and closes), esabling the user to see if
they can predict what values end up in various files.

Here is an exsmple run:
prompt> Jafs.py -C 2 -n 1 -5 12

Server c®
fileis containsi®
opentd [Ta10)
write:® value? -» 1
close:®
openia [fdie]
read:® «» valee?
close:0
fileis containsi?
prempts

The trace is fairly simple to read. On the left is the server, and each columm
shows Actions being taken on each of two clients (use -C <clientss 1o specify
a eifferent number). Each cliest generates one random action [« 1), which is
either the cpen/resd/close of & 1ile or the cpen/write/close of a file. The
contents of a file, for simplicity, 15 always just » single mumber,

To gerarate different traces, wae '-3' [for & randos seed), a3 always. Mere we
set it %9 12 to get this specific trace,

NES PROTOCOL

Time | Client A Client B Server Action?
0 fd = open(“file A"); — ™

10 read(fd, blockl); ———a1 r

20 | read(fd, block2); T Ceol

30 | read(fd, block1); 35, S s eac T o col ot
31 read(fd, block2); oW et hypiredd wic local

40 fd = open(“file A*); ———f= wop

50 write(fd, block1); Y500

60 | read(fd, block1); e Griol] ambes ot Oy
70 close(fd); wvile Bl 4o garger’ wiile h Ak
80 | read(fd, block1); “¥, u‘,*"?%ﬁf; D EILE = sk wat readAl

81 mad(fd, block2); web iw o -hl.g& fﬁﬁd- [N
90 close{fd);

100 fd = open["ﬂleA H tup‘b&_—
110 | read(fd, blockl); [0 e sl ' % oo PR e
120 | close(fd); -

24

AEFS PROTOCOL

Time | Client A Client B _| Server Action?

0 |fd=open(‘fileA); % e L T e |
10 | read(fd, block1); . semnd all oF [hke A

20 | read(fd, block2); [} 01!

30 | read(fd, block1); o
31 read(fd, block2); N
40 fd = open(“file A"); = webhp c ol berl
50 X write(fd, block1); = geod |4l ob A

60 | read(fd, blockl); lecal

70 close(fd); -

80 | read(fd, blockl); Mecall- S b Itg_ak :fﬁl 6_.'5‘«2;
81 | read(fd, block2);

90 | close(fd); s <

100 | fd = open(“fileA*); "L5& E?‘M.\

110 | read(fd, block1);

120 | close(fd); AT e

GOOD LUCK!

12/16/16

25

