
12/16/16

1

Exam 3: Review
Questions answered in this lecture:

What are some useful things to remember about file systems?

UNIVERSITY of WISCONSIN-MADISON
Computer Sciences Department

CS 537
Introduction to Operating Systems

Andrea C. Arpaci-Dusseau
Remzi H. Arpaci-Dusseau

Announcements

Project 5:
• Extension through Friday at 9pm; NOTHING LATER!

Final Exam – Saturday 10:05am – 12:05pm - Ingraham B10

• Bring #2 pencils and student id; All multiple choice

• Covers everything so far in course:

• Lectures + Reading + Homework + Projects 1-5

• 30% Old Material : 10% Virtualization, 20% Concurrency

• New Material: File systems!

• Look over sample exams

• Homework simulations: RAID, VSFS, AFS

• No question about Physical vs logical journals

• Office hours 10-11 Friday in CS 2310
(room available for group study til noon)

12/16/16

2

Review: Easy Piece 1

Virtualization

CPU
Process

Memory
Address Space

Context Switch

Schedulers

Segmentation

Paging

TLBs

Multilevel

Swapping

Dynamic Relocation

Review: Easy Piece 2

Concurrency

Threads

Synchronization
Techniques

Atomic HW Instr

Mutual Exclusion

Locks

Semaphores

Condition
Variables

Semaphores

Monitors

Implementation Ordering

Spin vs Block

12/16/16

3

Review: Easy Piece 3

Persistence

Storage Technology (Devices)
Device Drivers

HDDs

RAIDs (0, 1, 4, 5)
Performance and fault-tolerance

Local File Systems

Distributed File Systems

API (open) LFS (imap)

on-disk structures (FFS)

Crash consistency - Journaling

AFS (whole file caching + callbacks)

NFS (stateless servers) GFS (metadata master)

What questions did
you ask?

12/16/16

4

Disk Terminology
spindle

platter

surface

track
cylinder

(stack of tracks across all surfaces)

sector

read/write head

RAIDs

12/16/16

5

RAID Metrics

Capacity: how much space is available to higher levels?

Reliability: how many disks can RAID safely lose?
(assume fail stop!)

Performance: how long does each workload take?

Normalize each to characteristics of one disk

N := number of disks
C := capacity of 1 disk
S := sequential throughput of 1 disk
R := random throughput of 1 disk
D := latency of one small I/O operation

RAID-0: Striping
4 disks

Disk 0
0
4
8

12

Disk 1
1
5
9

13

Disk 2
2
6

10
14

Disk 4
3
7

11
15

stripe:

Given logical address A, find:
Disk = …
Offset = …

Given logical address A, find:
Disk = A % disk_count
Offset = A / disk_count

12/16/16

6

RAID-0: Analysis

What is capacity?

How many disks can fail (no loss)?

Latency

Throughput (sequential, random)?
Buying more disks improves throughput, but not latency!

N := number of disks
C := capacity of 1 disk
S := sequential throughput of 1 disk
R := random throughput of 1 disk
D := latency of one small I/O operation

N * C

0

N*S , N*R

D

Disk 0
0
4
8

12

Disk 1
1
5
9

13

Disk 2
2
6

10
14

Disk 4
3
7

11
15

Disk 0
0
1
2
3

Disk 1
0
1
2
3

Disk 0
0
2
4
6

Disk 1
0
2
4
6

Disk 2
1
3
5
7

Disk 4
1
3
5
7

2 disks

4 disks

RAID-1: MIRRORING

To be more precise -- RAID-10:
Stripe of MIRRORS

Given logical address A, find:
Disk = …
Offset = …

Disk = A % data_disk_count
Offset = A / data_disk_count

12/16/16

7

SAMPLE: RAID.PY

./raid.py -n 5 -L 1 -R 10 -D 8 -c

RAID-1: Analysis

What is capacity?

How many disks can fail?

Latency (read, write)?

N/2 * C
1 (or maybe N / 2)

D

N := number of disks
C := capacity of 1 disk
S := sequential throughput of 1 disk
R := random throughput of 1 disk
D := latency of one small I/O operation

Disk 0
0
2
4
6

Disk 1
0
2
4
6

Disk 2
1
3
5
7

Disk 4
1
3
5
7

12/16/16

8

RAID-1: Throughput

What is steady-state throughput for

- random reads?

- random writes?

- sequential writes?

- sequential reads?

Disk 0
0
2
4
6

Disk 1
0
2
4
6

Disk 2
1
3
5
7

Disk 4
1
3
5
7

N * R

N/2 * R

N/2 * S

Book: N/2 * S (other models: N * S)

Updating Parity: XOR

If write “0110” to block 0, how should parity be updated?

One approach: read all other blocks in stripe and calculate new parity

Second approach: Read old value at block 0
• 1100

Read old value for parity
• 0101

Calculate new parity
• 1111
• Write out new parity
• à 2 reads and 2 writes (1 read and 1 write to parity block)

12/16/16

9

RAID-4 Parity Disk

001 110 101 011Stripe:

Disk0 Disk1 Disk2 Disk3 Disk4

(parity)

001

RAID-4: Analysis

What is capacity?

How many disks can fail?

Latency (read, write)?

3 0 1 2 6

Disk0 Disk1 Disk2 Disk3 Disk4

(parity)

(N-1) * C

1

D, 2*D (read and write parity disk)

N := number of disks
C := capacity of 1 disk
S := sequential throughput of 1 disk
R := random throughput of 1 disk
D := latency of one small I/O operation

12/16/16

10

RAID-4: Throughput

What is steady-state throughput for

- sequential reads?

- sequential writes?

- random reads?

- random writes?

3 0 1 2 6

Disk0 Disk1 Disk2 Disk3 Disk4

(parity)

(N-1) * S

(N-1) * S (parity calculated for full stripe)

(N-1) * R

R/2 (read and write parity disk)

how to avoid
parity bottleneck?

RAID-5

- - - - P

Disk0 Disk1 Disk2 Disk3 Disk4

- - - P -

- - P - -

…

Rotate parity across different disks
Where exactly do individual data blocks go?

12/16/16

11

Left-symmetric RAID-5

D0 D1 D2 D3 D4
0 1 2 3 P0
5 6 7 P1 4
10 11 P2 8 9
15 P3 12 13 14
P4 16 17 18 19

Pattern repeats…

RAID-5: Analysis

What is capacity?

How many disks can fail?

Latency (read, write)?

(N-1) * C

1

D, 2*D (read and write parity disk)

This metrics same as RAID-4…
- - - - P

Disk0Disk1Disk2Disk3Disk4

- - - P -

- - P - -
…

N := number of disks
C := capacity of 1 disk
S := sequential throughput of 1 disk
R := random throughput of 1 disk
D := latency of one small I/O operation

12/16/16

12

RAID-5: Throughput

What is steady-state throughput for RAID-5?

- sequential reads?

- sequential writes?

- random reads?

- random writes?

Steady-state throughput for RAID-4:

- sequential reads?

- sequential writes?

- random reads?

- random writes?

(N-1) * S

(N-1) * S

(N-1) * R

R/2 (read and write parity disk)

3 0 1 2 6
Disk0 Disk1 Disk2 Disk3 Disk4

(parity)

- - - - P
Disk0Disk1Disk2Disk3Disk4

- - - P -

- - P - -
…

(N-1) * S

(N-1) * S

(N) * R

N * R/4

File API

12/16/16

13

rename

rename (char *old, char *new):

- deletes an old link to a file

- creates a new link to a file

Just changes name of file, does not move data
Even when renaming to new directory (unless…?)

File descriptors

0
1
2
3
4
5

offset = 12
inode =

offset = 0
inode =

fds
fd table

location = …
size = …

inode

int fd1 = open(“file.txt”); // returns 3

read(fd1, buf, 12);

int fd2 = open(“file.txt”); // returns 4

12/16/16

14

Steps to
creating/writing files

data inode root foo bar root foo
bitmap bitmap inode inode inode data data

create /foo/bar

read
read

read
read

read
write

write

read
write

write

Update inode (e.g., size) and data for directory

12/16/16

15

data inode root foo bar root foo
bitmap bitmap inode inode inode data data

append to /foo/bar

bar
data

read
read

write

write

write

[bar inode in mem]

Sample HW: VSFS

12/16/16

16

Motivation for
journaling

File system is appending to a file and must update 3 blocks:
- inode
- data bitmap
- data block

What happens if crash after only updating some blocks?
a) bitmap:

b) data:

c) inode:

d) bitmap and data:

e) bitmap and inode:

f) data and inode:

lost block

nothing bad

point to garbage (what?), another file may use

lost block

point to garbage

another file may use same data block

Basic Journaling

0 5

5,2 A B 0

6 12111 2 3 4 7 8 9 10

journal

transaction: write A to block 5; write B to block 2

12/16/16

17

New Layout

A
0 5

B 5,2 A B 1

6 12111 2 3 4 7 8 9 10

journal

transaction: write A to block 5; write B to block 2

Checkpoint: Writing new data to in-place locations

New Layout

A
0 5

B 5,2 A B 0

6 12111 2 3 4 7 8 9 10

journal

12/16/16

18

New Layout

A
0 5

B 4,6 A B 0

6 12111 2 3 4 7 8 9 10

journal

transaction: write C to block 4; write T to block 6

New Layout

A
0 5

B 4,6 C T 0

6 12111 2 3 4 7 8 9 10

journal

transaction: write C to block 4; write T to block 6

12/16/16

19

New Layout

C A T
0 5

B 4,6 C T 1

6 12111 2 3 4 7 8 9 10

journal

transaction: write C to block 4; write T to block 6

Checkpoint: Writing new data to in-place locations

New Layout

C A T
0 5

B 4,6 C T 0

6 12111 2 3 4 7 8 9 10

journal

transaction: write C to block 4; write T to block 6

12/16/16

20

Journaling:
States after crash

a) No transactions replayed during recovery; file system in old
state

b) No transactions replayed during recovery; file system in new
state

c) Transaction replayed during recovery; file system in old state

d) Transaction replayed during recovery; file system in new state

e) Transaction replayed during recovery; file system in unknown
state

Which of these 2 are not possible?

LFS
When LFS writes a new copy of a data block to a segment, it also writes a new copy of the inode that points to that data

block.

• True; since the data is in a new location in the log, the pointers to that location stored in the inode also have to change;

LFS does not overwrite inodes (which would be a random write) and instead writes a new copy of the inode to the log.

When LFS writes a new copy of inode to a segment, it also writes a new copy of the directory that points to that inode.

• False; LFS handles the fact that the location of the inode changes by having an imap to track the current location of

each inode.

LFS periodically checkpoints imaps to a known location on disk (alternating between two locations to withstand crashes).

• False; LFS checkpoints pointers to portions of the imap in known locations; the modified imaps themselves are written

out to each segment.

When performing garbage collection, LFS determines that an inode is valid by verifying that the corresponding entry in the

imap points to this location.

• True, this is what it does.

When performing garbage collection, LFS determines that a data block is valid by scanning all valid inodes from the imap

and verifying that one of the valid inodes points to this location.

• False; this would be way too slow. Instead, LFS writes segment summary info to each segment that describes each

updated data block (i.e., the inode that points to it and its offset in the file).

12/16/16

21

LFS Imap

In log-structured based file system there is a checkpoint region (CR)
which contains pointers to the inode map which contains pointer to the
inode which points to the data. Won't this affect performance to read 4

times from disk to get the data from 1 inode?

S1S0disk: S3S2

ptrs to
imap piecesmemory:

checkpoint

after last
checkpoint

tail after last
checkpoint

RPC
int main(…) {

int x = foo(”hello”);
}

int foo(char *msg) {
send msg to B
recv msg from B

}

Machine A
int foo(char *msg) {

…
}

void foo_listener() {
while(1) {

recv, call foo
}

}

Machine B

Actual calls

12/16/16

22

Raw Messages: UDP

UDP : User Datagram Protocol

API
• reads and writes over socket file descriptors

• messages sent from/to ports to target a process on machine

Provide minimal reliability features:
• messages may be lost

• messages may be reordered

• messages may be duplicated

• only protection: checksums to ensure data not corrupted

Reliable Messages:
Layering strategy

TCP: Transmission Control Protocol

Using software, build reliable, logical connections over
unreliable connections

• Make sure each message is received
• Make sure messages are received in order
• Make sure no duplicates are received

Techniques:
• Acknowledgment (ACK)
• Time-outs with retransmit
• Sequence numbers

12/16/16

23

NFS Summary

NFS handles client and server crashes very well;
robust APIs

- stateless: servers don’t remember clients or open files

- idempotent: repeating operations gives same results

Details:
• Writes: Clients flush writes on file close
• Reads: Check if can re-use data blocks for file every 3 seconds

(getattr to server)

Problems:
• Consistency model is odd (client may not see updates until 3

seconds after file is closed)
• Scalability limitations as more clients call stat() (getattr) on server

AFS Summary

Whole-file caching
• Upon open, AFS client fetches whole file (unless have fetched

before…), storing in local memory or disk

• More intuitive semantics (see version of file that existed when file
was opened)

• Upon close, client flushes file to server (if file was written)

State is useful for scalability, but makes handling crashes hard

• Server tracks callbacks for clients that have file cached
• Lose callbacks when server crashes…
• If file is changed, notify all clients that have that cached so won’t

re-use NEXT TIME client calls open()

12/16/16

24

Homework: AFS

Nfs Protocol

12/16/16

25

AFS Protocol

Good luck!

