UNIVERSITY of WISCONSIN-MADISON Computer Sciences Department

CS 537 Introduction to Operating Systems Andrea C. Arpaci-Dusseau Remzi H. Arpaci-Dusseau

INTRODUCTION

Questions answered in this lecture:

What is an OS and why do you want one?

Why study operating systems?

What will you do in this course?

To do:

Take a look at course web page and first programming project Bring laptop to first discussion section (Wednesday)

WHAT IS AN OPERATING SYSTEM?

Users

Applications

Operating System

Hardware

Operating System (OS): Software that converts hardware into a useful form for applications

What does an OS provide?

WHAT DOES OS PROVIDE?

Role #1: Abstraction - Provide standard library for hardware resources

What is a resource?
Anything valuable
e.g., CPU, memory, persistent storage (disk)

What abstraction does modern OS typically provide for each resource?

process and/or thread Memory:

address space

directories and files

Advantages of OS providing abstraction?
Allow applications to reuse common facilities
Make different devices look the same
Provide higher-level or more useful functionality

Challenges

What are the correct abstractions? How much of hardware should be exposed?

WHAT DOES OS PROVIDE?

Role #2: Resource management – Share resources well

Advantages of OS providing resource management?

Protect applications from one another

Provide efficient access to resources (cost, time, energy)

Provide fair access to resources

Challenges

What are the correct mechanisms?

What are the correct policies for different workloads?

COURSE Organization

How to cover all the topics relevant to operating systems?

THREE PIECES: FIRST

Virtualization

- Make each application believe it has each resource to itself
- Both mechanisms and policies

Demo

- · Virtualize CPU
 - More processes than processors (or cores) can be running concurrently
- Virtualize memory
 - Each process has its own separate address space
 - Accessing the same virtual address in two different address spaces gives different contents

THREE PIECES: SECOND

Concurrency: Events occur simultaneously and may interact with one another

OS must be able to handle concurrent events

Easier case

• Hide concurrency from independent processes

Trickier case

- Manage concurrency with **interacting** processes (or threads)
- Provide abstractions (locks, semaphores, condition variables, shared memory, critical sections) to processes
- Ensure processes do not deadlock

Demo

• Interacting threads must coordinate access to shared data

THREE PIECES: THIRD

Persistence: Access information permanently

- Lifetime of information is longer than lifetime of any one process
- Machine may be rebooted, machine may lose power or crash unexpectedly

Issues

- · Provide abstraction so applications do not know how data is stored
 - Files, directories (folders), links
- Correctness with unexpected failures
- **Performance**: disks are very slow; many optimizations needed!

Demo

File system does substantial work to ensure data updated correctly

ADVANCED TOPICS

Last week or two: Networked and distributed systems

WHY STUDY OPERATING SYSTEMS?

Build, modify, or administer an operating system

Understand system performance

- Behavior of OS impacts entire machine
- Tune workload performance

Apply knowledge across many layers

• Computer architecture, programming languages, data structures and algorithms, and performance modeling

Fun and challenging to understand large, complex systems

TO DO

Look over course web page

Take a look at first programming project

- Refresh knowledge of C
- If needed: Watch video about programming in C

Attend discussion section tomorrow to meet TA

• Bring laptop for C review