
10/17/16

1

Concurrency:
Locks

Questions answered in this lecture:

Review threads and mutual exclusion for critical sections

How can locks be used to protect shared data structures such as linked lists?

Can locks be implemented by disabling interrupts?

Can locks be implemented with loads and stores?

Can locks be implemented with atomic hardware instructions?

Are spinlocks a good idea?

UNIVERSITY of WISCONSIN-MADISON
Computer Sciences Department

CS 537
Introduction to Operating Systems

Andrea C. Arpaci-Dusseau
Remzi H. Arpaci-Dusseau

Announcements
P2: Due this Friday à Extension to Sunday evening…
• Test scripts and handin directories available
• Purpose of graph is to demonstrate scheduler is working correctly

1st Exam: Congratulations for completing!
• Grades posted to Learn@UW : Average around 80%

90% and up: A
85 - 90: AB
80 - 85: B
70 - 80: BC
60 - 70: C
Below 60: D

• Return individual sheets in discussion section

• Exam with answers will be posted to course web page soon…

Read as we go along!
• Chapter 28

10/17/16

2

CPU 1 CPU 2
running
thread 1

running
thread 2

RAM
PageDir A

PageDir B
…PTBRPTBR

CODE HEAPVirt Mem
(PageDir B)

IP IPSP SP

Review:
Which registers store the same/different values across threads?

CPU 1 CPU 2
running
thread 1

running
thread 2

RAM
PageDir A

PageDir B
…PTBRPTBR

CODE HEAPVirt Mem
(PageDir B)

IP IPSP SP

STACK 1 STACK 2

All general purpose registers are virtualized
à each thread given impression of own copy

10/17/16

3

Review: What is needed
for CORRECTNESS?

Balance = balance + 1;

Instructions accessing shared memory must execute as uninterruptable group
• Need group of assembly instructions to be atomic

mov 0x123, %eax
add %0x1, %eax
mov %eax, 0x123

critical section

More general:
Need mutual exclusion for critical sections
• if process A is in critical section C, process B can’t

(okay if other processes do unrelated work)

Other Examples

Consider multi-threaded applications that do more than
increment shared balance

Multi-threaded application with shared linked-list
• All concurrent:

• Thread A inserting element a

• Thread B inserting element b

• Thread C looking up element c

10/17/16

4

Shared Linked List
Void List_Insert(list_t *L,

int key) {
node_t *new =

malloc(sizeof(node_t));
assert(new);
new->key = key;
new->next = L->head;
L->head = new;

}

int List_Lookup(list_t *L,
int key) {

node_t *tmp = L->head;
while (tmp) {

if (tmp->key == key)
return 1;

tmp = tmp->next;
}

return 0;
}

typedef struct __node_t {
int key;
struct __node_t *next;

} node_t;

Typedef struct __list_t {
node_t *head;

} list_t;

Void List_Init(list_t *L) {
L->head = NULL;

}

What can go wrong?
Find schedule that leads to problem?

Linked-List Race

Thread 1 Thread 2

new->key = key

new->next = L->head

new->key = key

new->next = L->head

L->head = new

L->head = new

Both entries point to old head
Only one entry (which one?) can be the new head.

10/17/16

5

head T1’s
node

old
head n3 n4 …

T2’s
node

Resulting Linked List

[orphan node]

Locking Linked Lists
Void List_Insert(list_t *L,

int key) {
node_t *new =

malloc(sizeof(node_t));
assert(new);
new->key = key;
new->next = L->head;
L->head = new;

}

int List_Lookup(list_t *L,
int key) {

node_t *tmp = L->head;
while (tmp) {

if (tmp->key == key)
return 1;
tmp = tmp->next;

}
return 0;
}

typedef struct __node_t {
int key;
struct __node_t *next;

} node_t;

Typedef struct __list_t {
node_t *head;

} list_t;

Void List_Init(list_t *L) {
L->head = NULL;

}

How to add locks?

10/17/16

6

Locking Linked Lists

typedef struct __node_t {
int key;
struct __node_t *next;

} node_t;

Typedef struct __list_t {
node_t *head;

} list_t;

Void List_Init(list_t *L) {
L->head = NULL;

}

How to add locks?

typedef struct __node_t {
int key;
struct __node_t *next;

} node_t;

Typedef struct __list_t {
node_t *head;
pthread_mutex_t lock;

} list_t;

Void List_Init(list_t *L) {
L->head = NULL;
pthread_mutex_init(&L->lock,

NULL);
}

One lock per list – Fine if add to OTHER lists concurrently

pthread_mutex_t lock;

Locking Linked Lists :
Approach #1

Void List_Insert(list_t *L,
int key) {

node_t *new =
malloc(sizeof(node_t));

assert(new);
new->key = key;
new->next = L->head;
L->head = new;

}
int List_Lookup(list_t *L,

int key) {
node_t *tmp = L->head;
while (tmp) {

if (tmp->key == key)
return 1;

tmp = tmp->next;
}

return 0;
}

Consider everything critical section

Pthread_mutex_lock(&L->lock);

Pthread_mutex_unlock(&L->lock);

Pthread_mutex_lock(&L->lock);

Pthread_mutex_unlock(&L->lock);

Can critical section be smaller?

10/17/16

7

Locking Linked Lists :
Approach #2

Void List_Insert(list_t *L,
int key) {

node_t *new =
malloc(sizeof(node_t));

assert(new);
new->key = key;
new->next = L->head;
L->head = new;

}
int List_Lookup(list_t *L,

int key) {
node_t *tmp = L->head;
while (tmp) {

if (tmp->key == key)
return 1;

tmp = tmp->next;
}

return 0;
}

Critical section small as possible

Pthread_mutex_lock(&L->lock);

Pthread_mutex_unlock(&L->lock);

Pthread_mutex_lock(&L->lock);

Pthread_mutex_unlock(&L->lock);

Locking Linked Lists :
Approach #3

Void List_Insert(list_t *L,
int key) {

node_t *new =
malloc(sizeof(node_t));

assert(new);
new->key = key;
new->next = L->head;
L->head = new;

}
int List_Lookup(list_t *L,

int key) {
node_t *tmp = L->head;
while (tmp) {

if (tmp->key == key)
return 1;

tmp = tmp->next;
}

return 0;
}

What about Lookup()?

Pthread_mutex_lock(&L->lock);

Pthread_mutex_unlock(&L->lock);

Pthread_mutex_lock(&L->lock);

Pthread_mutex_unlock(&L->lock);

If no List_Delete(), locks not needed

10/17/16

8

Implementing
Synchronization

Build higher-level synchronization primitives in OS
• Operations that ensure correct ordering of instructions across threads

Motivation: Build them once and get them right

Monitors Semaphores
Condition Variables

Locks

Loads Stores Test&Set
Disable Interrupts

Lock Implementation
Goals

Correctness
• Mutual exclusion

• Only one thread in critical section at a time
• Progress (deadlock-free)

• If several simultaneous requests, must allow one to proceed
• Bounded waiting (starvation-free)

• Must eventually allow each waiting thread to eventually enter

Fairness
Each thread waits in some defined order

Performance
CPU is not used unnecessarily (e.g., spinning)
Fast to acquire lock if no contention with other threads

10/17/16

9

Implementing
Synchronization

To implement, need atomic operations

Atomic operation: No other instructions can be interleaved

Examples of atomic operations
• Code between interrupts on uniprocessors

• Disable timer interrupts, don’t do any I/O

• Loads and stores of words
• Load r1, B

• Store r1, A

• Special hw instructions
• Test&Set

• Compare&Swap

Implementing Locks:
W/ Interrupts

Turn off interrupts for critical sections
Prevent dispatcher from running another thread

Code between interrupts executes atomically

Void acquire(lockT *l) {
disableInterrupts();

}

Void release(lockT *l) {
enableInterrupts();

}

Disadvantages??
Only works on uniprocessors
Process can keep control of CPU for arbitrary length
Cannot perform other necessary work

10/17/16

10

Implementing
Synchronization

To implement, need atomic operations

Atomic operation: No other instructions can be interleaved

Examples of atomic operations
• Code between interrupts on uniprocessors

• Disable timer interrupts, don’t do any I/O

• Loads and stores of words
• Load r1, B

• Store r1, A

• Special hw instructions
• Test&Set

• Compare&Swap

Implementing LOCKS:
w/ Load+Store

Code uses a single shared lock variable

Boolean lock = false; // shared variable

void acquire(Boolean *lock) {

while (*lock) /* wait */ ;

*lock = true;

}

void release(Boolean *lock) {

*lock = false;

}

Why doesn’t this work? Example schedule that fails with 2 threads?

10/17/16

11

Race Condition with
LOAD and STORE

*lock == 0 initially

Thread 1 Thread 2

while(*lock == 1)

;

while(*lock == 1)

;

*lock = 1

*lock = 1 Both threads grab lock!
Problem: Testing lock and setting lock are not atomic

Demo

Main-thread-3.c

Critical section not protected with faulty lock
implementation

10/17/16

12

Peterson’s Algorithm
Assume only two threads (tid = 0, 1) and use just loads and stores

int turn = 0; // shared across threads – PER LOCK

Boolean lock[2] = {false, false}; // shared – PER LOCK

Void acquire() {

lock[tid] = true;

turn = 1-tid;

while (lock[1-tid] && turn == 1-tid) /* wait */ ;

}

Void release() {

lock[tid] = false;

}

Example of spin-lock

Different Cases:
All work

Lock[0] = true;

turn = 1;

while (lock[1] && turn ==1)

;

Only thread 0 wants lock initially

In critical section Lock[1] = true;

turn = 0;

while (lock[0] && turn == 0)

lock[0] = false;

while (lock[0] && turn == 0)
;

10/17/16

13

Different Cases:
All work

Lock[0] = true;

turn = 1;

while (lock[1] && turn ==1)

;

Thread 0 and thread 1 both try to acquire lock at same time

Lock[1] = true;

turn = 0;

while (lock[0] && turn == 0)

Finish critical section
lock[0] = false; while (lock[0] && turn == 0)

;

Different Cases:
All Work

Lock[0] = true;

turn = 1;

while (lock[1] && turn ==1)

Thread 0 and thread 1 both want lock

Lock[1] = true;

turn = 0;

while (lock[0] && turn == 0)
;

10/17/16

14

Different Cases:
All Work

Lock[0] = true;

turn = 1;

while (lock[1] && turn ==1)

while (lock[1] && turn ==1)
;

Thread 0 and thread 1 both want lock;

Lock[1] = true;

turn = 0;

while (lock[0] && turn == 0)

Peterson’s Algorithm:
Intuition

Mutual exclusion: Enter critical section if and only if
Other thread does not want to enter OR
Other thread wants to enter, but your turn (only 1 turn)

Progress: Both threads cannot wait forever at while() loop
Completes if other process does not want to enter
Other process (matching turn) will eventually finish

Bounded waiting (not shown in examples)
Each process waits at most one critical section
(because turn given to other)

Problem: doesn’t work on modern hardware
(doesn’t provide sequential consistency due to caching)

10/17/16

15

Implementing
Synchronization

To implement, need atomic operations

Atomic operation: No other instructions can be interleaved

Examples of atomic operations
• Code between interrupts on uniprocessors

• Disable timer interrupts, don’t do any I/O

• Loads and stores of words
• Load r1, B

• Store r1, A

• Special hw instructions
• Test&Set

• Compare&Swap

xchg: atomic exchange,
or test-and-set

// xchg(int *addr, int newval)
// ATOMICALLY return what was pointed to by addr
// AT THE SAME TIME, store newval into addr

int xchg(int *addr, int newval) {
int old = *addr;
*addr = newval;
return old;

}
Need hardware support
static inline uint
xchg(volatile unsigned int *addr, unsigned int newval)
{

uint result;
asm volatile("lock; xchgl %0, %1" :

"+m" (*addr), "=a" (result) :
"1" (newval) : "cc");

return result;
}

10/17/16

16

LOCK Implementation
with XCHG

typedef struct __lock_t {
int flag;

} lock_t;

void init(lock_t *lock) {
lock->flag = ??;

}

void acquire(lock_t *lock) {
????;
// spin-wait (do nothing)

}

void release(lock_t *lock) {
lock->flag = ??;

}

int xchg(int *addr, int newval)

XCHG Implementation
typedef struct __lock_t {

int flag;
} lock_t;

void init(lock_t *lock) {
lock->flag = 0;

}

void acquire(lock_t *lock) {
while(xchg(&lock->flag, 1) == 1) ;
// spin-wait (do nothing)

}

void release(lock_t *lock) {
lock->flag = 0;

}

Example of spin-lock

10/17/16

17

DEMO: XCHG

Critical section protected with our lock implementation!!

Main-thread-5.c

Break

10/17/16

18

Other Atomic HW
Instructions

int CompareAndSwap(int *addr, int expected, int new) {
int actual = *addr;
if (actual == expected)
*addr = new;

return actual;
}

void acquire(lock_t *lock) {
while(CompareAndSwap(&lock->flag, ?, ?)

== ?) ;
// spin-wait (do nothing)

}

Example of spin-lock

Other Atomic HW
Instructions

int CompareAndSwap(int *ptr, int expected, int new) {
int actual = *addr;
if (actual == expected)
*addr = new;

return actual;
}

void acquire(lock_t *lock) {
while(CompareAndSwap(&lock->flag, 0, 1)

== 1) ;
// spin-wait (do nothing)

}

10/17/16

19

Lock Implementation
Goals

Correctness
• Mutual exclusion

• Only one thread in critical section at a time
• Progress (deadlock-free)

• If several simultaneous requests, must allow one to proceed
• Bounded (starvation-free)

• Must eventually allow each waiting thread to enter eventually

Fairness
Each thread waits in some determined ordered

Performance
CPU is not used unnecessarily

spin spin spin spin

Basic Spinlocks are
Unfair

A B

0 20 40 60 80 100 120 140 160

A B A B A B

lock

lockunlock lockunlock lockunlock lockunlock

Scheduler is independent of locks/unlocks

10/17/16

20

Fairness: Ticket Locks

Idea: reserve each thread’s turn to use a lock.

Each thread spins until their turn.

Use new atomic primitive, fetch-and-add:

int FetchAndAdd(int *ptr) {

int old = *ptr;

*ptr = old + 1;

return old;

}

Acquire: Grab ticket;
Wait while not thread’s ticket != turn

Release: Advance to next turn

0
1
2
3
4
5
6
7

A lock():
B lock():
C lock():
A unlock():
B runs
A lock():
B unlock():
C runs
C unlock():
A runs
A unlock():
C lock():

Ticket Lock ExampLE

Ticket Turn

10/17/16

21

0
1
2
3
4
5
6
7

A lock(): gets ticket 0, spins until turn = 0 àruns
B lock(): gets ticket 1, spins until turn=1
C lock(): gets ticket 2, spins until turn=2
A unlock(): turn++ (turn = 1)
B runs
A lock(): gets ticket 3, spins until turn=3
B unlock(): turn++ (turn = 2)
C runs
C unlock(): turn++ (turn = 3)
A runs
A unlock(): turn++ (turn = 4)
C lock(): gets ticket 4, runs

Ticket Lock ExampLE

Ticket Lock
Implementation

typedef struct __lock_t {

int ticket;

int turn;

}

void lock_init(lock_t *lock) {

lock->ticket = 0;

lock->turn = 0;

}

void acquire(lock_t *lock) {

int myturn = FAA(&lock->ticket);

while (lock->turn != myturn); // spin

}

void release (lock_t *lock) {

FAA(&lock->turn);

}

10/17/16

22

Ticket Lock

typedef struct __lock_t {

int ticket;

int turn;

}

void lock_init(lock_t *lock) {

lock->ticket = 0;

lock->turn = 0;

}

void acquire(lock_t *lock) {
int myturn = FAA(&lock->ticket);
while(lock->turn != myturn)

yield(); // spin
}

void release (lock_t *lock) {
lock->turn++;

}

FAA() used in textbook à conservative
Try this modification in Homework simulations

Spinlock Performance

Fast when…

- many CPUs

- locks held a short time

- advantage: avoid context switch

Slow when…

- one CPU

- locks held a long time

- disadvantage: spinning is wasteful

10/17/16

23

spinspin spin spin spin

CPU Scheduler is
Ignorant

A B

0 20 40 60 80 100 120 140 160

C D A B C D

lock unlock lock

CPU scheduler may run B instead of A
even though B is waiting for A

Ticket Lock with
Yield()

typedef struct __lock_t {

int ticket;

int turn;

}

void lock_init(lock_t *lock) {

lock->ticket = 0;

lock->turn = 0;

}

void acquire(lock_t *lock) {

int myturn = FAA(&lock->ticket);

while(lock->turn != myturn)

yield();

}

void release (lock_t *lock) {

FAA(&lock->turn);

}

Remember: yield() voluntarily relinquishes CPU for
remainder of timeslice, but process remains READY

10/17/16

24

spinspin spin spin spin

A B

0 20 40 60 80 100 120 140 160

C D A B C D

lock unlock lock

A

0 20 40 60 80 100 120 140 160

A B

lock unlock lock

no yield:

yield:

Yield Instead of Spin

Spinlock Performance

Waste…
Without yield: O(threads * time_slice)
With yield: O(threads * context_switch)

So even with yield, spinning is slow with high thread
contention

Next improvement: Block and put thread on waiting
queue instead of spinning

