ANNOUNCEMENTS

FASTEST SORTERS




UNIVERSITY of WISCONSIN-MADISON
Computer Sciences Department

CS 537 i aC. A D
Introduction to Operating Syster ziH. A

CLASSIC SYNCHRONIZATION
PROBLEMS

SYNCHRONIZATION

highe C hros e H
. ﬁwrmm fihft ensure mr*.r.@"r.mh‘m{ of instructions across threads

Motivation: Build them once and get them right

Monitors
Locks

Condition Variables

[.oads Stores Test&Set

Disable Interrupts

Semaphores




MONITORS

SEMAPHORE OPERATIONS

wait and post are atomic




SEMAPHORES

DINING PHILOSOPHERS




DINING PHILOSOPHERS:
ATTEMPT #1

DINING PHILOSOPHERS:
ATTEMPT #l

Deadlocked!



DINING PHILOSOPHERS:
ATTEMPT #2

DINING PHILOSOPHERS:
HOW TO APPROACH




DINING PHILOSOPHERS:
EXAMPLE EXECUTION




READER/WRITER LOCKS

VERSION 1




READER/WRITER LOCKS

READER/WRITER LOCKS

T1: acquire_readlock()
T2: acquire_readlock()
T3: acquire_writelock()
T2: release_readlock()
T6: acquire_readlock()
T1: release_readlock()
Té6: release_readlock()
T4: acquire_readlock()
T5: acquire_readlock() // 777
T3: release_writelock()
// what happens???




VERSION 2




SEMAPHORES

CV REVIEW

The scheduler runs each thread in the system such that each line of the given C-language code
executes in one scheduler tick, or interval. For example, if there are two threads in the system, T and
S, we tell you which thread was scheduled in each tick by showing you either a “T” or a “S” to designate
that one line of C-code was scheduled for the corresponding thread; for example, TTTSS means that 3
lines of C code were run from thread T followed by 2 lines from thread S.

Some lines of C code require special rules, as follows.

Assume each test of a while() loop or an if() statement requires one scheduler tick. Assume
jumping to the correct code does not take an additional tick (e.g., jumping either inside or outside the
while loop or back to the while condition does not take an extra tick; jumping to the then or the else
branch of an if statement does not take an extra tick).

Assume function calls whose internals are not shown and that do not require synchronization, such
as gadd(), gremove(), gempty(), and malloc(), require one scheduling tick.

Function calls that may need to wait for another thread to do something (e.g., mutex_lock() and
cond_wait()) may consume an arbitrary number of scheduling ticks and are treated as follow.

For mutex_lock(), assume that the function call to mutex_lock() requires one scheduling interval if the
lock is available. If the lock is not availabl the call spi its until the lock is available (e.g,
you may see a long instruction stream TTTTTTT that causes no progress for this thread). Once the lock
is available, the next scheduling of the acquiring thread causes that thread to obtain the lock (e.g, after
a thread S releases the lock, the next scheduling of the waiting thread T will complete mutex_lock();
note that T does need to be scheduled for one tick with the lock released for mutex_lock() to
complete).

The rules for cond_wait() and sema_wait() are similar. When a thread calls one of these versions of
wait(), if the work has not yet been done to complete the wait(), then no matter how long the
scheduler runs this thread (e.g., TTTTT), this thread will remain waiting in the wait() routine. After
another thread runs and does the work necessary for the wait() routine to complete, then the next
scheduling of thread T will cause the wait() line to complete; again, note that T does need to be
scheduled for one tick with the work completed for wait() to complete).




void thread join() {

Mutex_lock(&m) ; // pl
while (done == 0) /] p2

Cond_wait (&c, &m); // p3
Mutex_unlock (&m) ; // p4

}
void thread exit() {

Mut lock (&m) ; // cl i 4

done = 1 ;728 p.. P will have acquired lock and
Cond_signal (&c) ; // c3 P o

Mutex unlock (sm) ; finished mutex_lock().

C1. C must wait to acquire the lock since it is currently held by P.

p3. Since done = 0, P will execute p2 and p3; it is stuck in p3 until signaled.

c4. C finishes c1, c2, c3. Next time it executes c4. CV signaled but mutex still locked

p3. P cannot return from cond_wait() until it acquires lock held by C; P stays in p3
Beyond. C executes c4 and then code beyond c4.

Bevond. P finishes n3. rechecks 2. then n4. Next time bevond p4.



