
10/24/16

1

Announcements

Project 3: Shared memory segments
• Linux: use shmget and shmat across server + client processes

• semaphores for locks; catch ctrl-C to do clean-up
• Can work with a project partner (request new one if desired)
• No videos

• Xv6: Implement combination of shmgetat() – Watch video!
• No partner for this part

• Due Wed 11/02 by 9:00 pm

Class feedback for mid-course evaluations
• Receive email about survey to fill out until this Friday

Midterm 2: 11/09 Wednesday 7:15-9:15 in Humanities 3650
• Fill out form on web page if have conflict – deadline 2 weeks before

Today’s Reading: Chapter 31

Fastest Sorters

• 301 : Craig Barabas

• 302 : Gerald Anders

• 303 : William Yang

• 304 : Zachary Wachtel

10/24/16

2

Classic Synchronization
problems

Questions answered in this lecture:

What are Monitors and why do people like them?

How to solve Dining Philosophers synchronization problem?

How to provide Reader/Writer Locks?

Priority to Readers vs Priority to Writers

If time: Condition Variable review for Exam

UNIVERSITY of WISCONSIN-MADISON
Computer Sciences Department

CS 537
Introduction to Operating Systems

Andrea C. Arpaci-Dusseau
Remzi H. Arpaci-Dusseau

Synchronization

Build higher-level synchronization primitives in OS
• Operations that ensure correct ordering of instructions across threads

Motivation: Build them once and get them right

Monitors Semaphores
Condition Variables

Locks

Loads Stores Test&Set
Disable Interrupts

10/24/16

3

Monitors

Motivation
• Users can inadvertently misuse locks and semaphores

• (e.g., never unlock a mutex)

Idea
• Provide language support to automatically lock and unlock monitor lock

when in critical section
• Lock is added implicitly; never seen by user

• Provide condition variables for scheduling constraints (zero or more)

Examples
• Mesa language from Xerox
• Java: Acquire monitor lock when call synchronized methods in class

synchronized deposit(int amount) {
// language adds lock.acquire()
balance += amount;
// language adds lock.release()

}

Semaphore Operations

Allocate and Initialize

sem_t sem;
sem_init(sem_t *s, int initval) {
s->value = initval;

}

User cannot read or write value directly after initialization

Wait or Test (sometime P() for Dutch word)

Waits until value of sem is > 0, then decrements sem value

Post or Signal or Increment (sometime V() for Dutch)

Increment sem value, then wake a single waiter (so it can check)

wait and post are atomic

10/24/16

4

Semaphores

Semaphores are equivalent to locks + condition variables

• Can be used for both mutual exclusion and ordering

Semaphores contain state

• How they are initialized depends on how they will be used

• Init to 1: Mutex

• Init to 0: Join (1 thread must arrive first and post)

• Init to N: Number of available resources

Sem_wait(): Waits until value > 0, then decrement (atomic)

Sem_post(): Increment value, then wake a single waiter (atomic)

Can use semaphores in producer/consumer relationships (previous
lecture) and for reader/writer locks

Dining Philosophers

Problem Statement
• N Philosophers sitting at a round table

• Each philosopher shares a chopstick (or fork) with neighbor
• Each philosopher must have both chopsticks to eat
• Neighbors can’t eat simultaneously

• Philosophers alternate between thinking and eating

Each philosopher/thread i runs
following code:

while (1) {

think();

take_chopsticks(i);

eat();

put_chopsticks(i);

}

0

1

2

4

3

0 1

2

3

4

10/24/16

5

Dining Philosophers:
Attempt #1

Two neighbors can’t use chopstick at same time

Must test if chopstick is there and grab it atomically

Represent each chopstick with a semaphore
Grab right chopstick then left chopstick

Code for 5 philosophers:
sem_t chopstick[5]; // Initialize each to 1
take_chopsticks(int i) {

wait(&chopstick[i]);
wait(&chopstick[(i+1)%5]);

}
put_chopsticks(int i) {

signal(&chopstick[i]);
signal(&chopstick[(i+1)%5]);

}

0

1

2

4

3

0 1

2

3

4

Dining Philosophers:
Attempt #1

Two neighbors can’t use chopstick at same time

Must test if chopstick is there and grab it atomically
Represent each chopstick with a semaphore
Grab right chopstick then left chopstick

Code for 5 philosophers:
sem_t chopstick[5]; // Initialize each to 1
take_chopsticks(int i) {

wait(&chopstick[i]);
wait(&chopstick[(i+1)%5]);

}
put_chopsticks(int i) {

signal(&chopstick[i]);
signal(&chopstick[(i+1)%5]);

}

What is wrong with this solution???

0

1

2

4

3

0 1

2

3

4

Deadlocked!

10/24/16

6

Dining Philosophers:
Attempt #2

Approach
Grab lower-numbered chopstick first, then higher-numbered

Code for 5 philosophers:
sem_t chopstick[5]; // Initialize to 1
take_chopsticks(int i) {

if (i < 4) {
wait(&chopstick[i]);
wait(&chopstick[i+1]);

} else {
wait(&chopstick[0]);
wait(&chopstick[4]);

}

Philosopher 3 finishes take_chopsticks() and eventually
calls put_chopsticks();

Who can run then?

What is wrong with this solution???

0

1

2

4

3

0 1

2

3

4

Dining Philosophers:
How to Approach

Guarantee two goals
• Safety: Ensure nothing bad happens (don’t violate constraints of problem)
• Liveness: Ensure something good happens when it can

(make as much progress as possible)

Introduce state variable for each philosopher i
state[i] = THINKING, HUNGRY, or EATING

Safety:

No two adjacent philosophers eat simultaneously

for all i: !(state[i]==EATING && state[i+1%5]==EATING)

Liveness:

Not the case that a philosopher is hungry and his neighbors are not
eating

for all i: !(state[i]==HUNGRY &&
(state[i+4%5]!=EATING && state[i+1%5]!=EATING))

10/24/16

7

sem_t mayEat[5]; // how to initialize?
sem_t mutex; // how to init?
int state[5] = {THINKING};
take_chopsticks(int i) {

wait(&mutex); // enter critical section
state[i] = HUNGRY;
testSafetyAndLiveness(i); // check if I can run
signal(&mutex); // exit critical section
wait(&mayEat[i]);

}
put_chopsticks(int i) {

wait(&mutex); // enter critical section
state[i] = THINKING;
test(i+1 %5); // check if neighbor can run now
test(i+4 %5);
signal(&mutex); // exit critical section

}
testSafetyAndLiveness(int i) {

if(state[i]==HUNGRY&&state[i+4%5]!=EATING&&state[i+1%5]!=EATING) {
state[i] = EATING;
signal(&mayEat[i]);

} }

Dining Philosophers:
Example Execution

Take_chopsticks(0)

Take_chopsticks(1)

Take_chopsticks(2)

Take_chopsticks(3)

Take_chopsticks(4)

Put_chopsticks(0)

Put_chopsticks(2)

10/24/16

8

Reader/Writer Locks

Protect shared data structure; Goal:

Let multiple reader threads grab lock with other readers (shared)

Only one writer thread can grab lock (exclusive)
• No reader threads
• No other writer threads

Two possibilities for priorities – different implementations
1) No reader waits unless writer in critical section

• How can writers starve?

2) No writer waits longer than absolute minimum
• How can readers starve?

Let us see if we can understand code…

Version 1

Readers have priority

10/24/16

9

Reader/Writer Locks

1 typedef struct _rwlock_t {
2 sem_t lock;
3 sem_t writelock;
4 int readers;
5 } rwlock_t;
6
7 void rwlock_init(rwlock_t *rw) {
8 rw->readers = 0;
9 sem_init(&rw->lock, 1);
10 sem_init(&rw->writelock, 1);
11 }
12

Reader/Writer Locks
13 void rwlock_acquire_readlock(rwlock_t *rw) {
14 sem_wait(&rw->lock);
15 rw->readers++;
16 if (rw->readers == 1)
17 sem_wait(&rw->writelock);
18 sem_post(&rw->lock);
19 }
21 void rwlock_release_readlock(rwlock_t *rw) {
22 sem_wait(&rw->lock);
23 rw->readers--;
24 if (rw->readers == 0)
25 sem_post(&rw->writelock);]
26 sem_post(&rw->lock);
27 }
29 rwlock_acquire_writelock(rwlock_t *rw) { sem_wait(&rw->writelock); }
31 rwlock_release_writelock(rwlock_t *rw) { sem_post(&rw->writelock); }

T1: acquire_readlock()
T2: acquire_readlock()
T3: acquire_writelock()
T2: release_readlock()
T6: acquire_readlock()
T1: release_readlock()
T6: release_readlock()
T4: acquire_readlock()
T5: acquire_readlock() // ???
T3: release_writelock()
// what happens???

10/24/16

10

Version 2

Writers have priority

Three semaphores
• Mutex

• OKToRead (siimilar to myEat[] in Dining Philosphers)

• OKToWrite

How to initialize?

Reader Process

Sem_wait(&mutex);

If (ActiveWriters +
WaitingWriters==0) {

sem_post(OKToRead);

ActiveReaders++;

} else WaitingReaders++;

Sem_post(&mutex);

Sem_wait(OKToRead);

// Do read

Sem_wait(&mutex);

ActiveReaders--;

If (ActiveReaders==0 &&
WaitingWriters > 0) {

Sem_post(OKToWrite);

ActiveWriters++;

WaitingWriters--;

}

Sem_post(&mutex);

Writer Process
Sem_wait(&mutex);
If (ActiveWriters +
ActiveReaders +
WaitingWriters==0) {

sem_post(OKToWrite);
ActiveWriters++;

} else WaitingWriters++;
Sem_post(&mutex);
Sem_wait(OKToWrite);
// Do write
Sem_wait(&mutex);
ActiveWriters--;
If (WaitingWriters > 0) {

Sem_post(OKToWrite);
ActiveWriters++;
WaitingWriters--;

} else while(WaitingReaders>0)
{

sem_post(OKToRead);
ActiveReaders++;
WaitingReaders--;

}
Sem_post(&mutex);

10/24/16

11

Semaphores

Semaphores are equivalent to locks + condition variables

• Can be used for both mutual exclusion and ordering

Semaphores contain state

• How they are initialized depends on how they will be used

• Init to 1: Mutex

• Init to 0: Join (1 thread must arrive first, then other)

• Init to N: Number of available resources

Sem_wait(): Waits until value > 0, then decrement (atomic)

Sem_post(): Increment value, then wake a single waiter (atomic)

Can use semaphores in producer/consumer relationships and for
reader/writer locks

CV Review

10/24/16

12

After	the	instruction	stream	“P”	(i.e.,	
after	scheduler	runs	one	line	from	
parent),	which	line	of	the	parent’s	will	
execute	when	it	is	scheduled	again?	

Assume	the	scheduler	continues	on	with	“C”	(the	full	instruction	stream	is	PC).	
Which	line	will	child	execute	when	it	is	scheduled	again?	

After	PPP	(full	is	PCPPP),	which	line	for	parent	next?

After	CCC	(full	is	PCPPPCCC),	which	line	for	child	next?

After	PP	(full	is	PCPPPCCCPP),	which	line	for	parent	next?

After CC (full is PCPPPCCCPPCC, which line for child next?

After	PPP	(full	PCPPPCCCPPCCPPP),	which	line	for	parent	next?

p2.	P	will	have	acquired	lock	and		
finished	mutex_lock().	

C1.	C	must	wait	to	acquire	the	lock	since	it	is	currently	held	by	P.	

p3.	Since	done	=	0,	P	will	execute	p2	and	p3;	it	is	stuck	in	p3	until	signaled.

c4.	C	finishes	c1,	c2,	c3.	Next	time	it	executes	c4.		CV	signaled	but	mutex still	locked

p3.	P	cannot	return	from	cond_wait()	until	it	acquires	lock	held	by	C;	P	stays	in	p3

Beyond.		C	executes	c4	and	then	code	beyond	c4.	

Beyond.		P	finishes	p3,	rechecks	p2,	then	p4.	Next	time	beyond	p4.	

