
11/18/16

1

Announcements

P3b graded; P3a needs to be entered into Learn@UW

P4: Threads (Part a and b) available

• Still need partner?

• Due Friday 11/18 at 9pm – really Sunday 11/27 9pm

Exam 2 Graded: 80-83% average

• Solutions posted, midterm2.pdf file in your handin

Read as we go along!
• Chapter 40

File System
Implementation

Questions answered in this lecture:
What on-disk structures to represent files and directories?

Contiguous, Extents, Linked, FAT, Indexed, Multi-level indexed
Which are good for different metrics?

What disk operations are needed for:
make directory
open file
write/read file
close file

UNIVERSITY of WISCONSIN-MADISON
Computer Sciences Department

CS 537
Introduction to Operating Systems

Andrea C. Arpaci-Dusseau
Remzi H. Arpaci-Dusseau

11/18/16

2

Review: File Names

Different types of names work better in different contexts

inode

- unique name for file system to use

- records meta-data about file: file size, permissions, etc

path

- easy for people to remember

- organizes files in hierarchical manner; encode locality information

file descriptor

- avoid frequent traversal of paths

- remember multiple offsets for next read or write

Review: File API

int fd = open(char *path, int flag, mode_t mode)

read(int fd, void *buf, size_t nbyte)

write(int fd, void *buf, size_t nbyte)

close(int fd)

11/18/16

3

Today: Implementation

1. On-disk structures

- how does file system represent files, directories?

2. Access methods

- what steps must reads/writes take?

Part 1:
Disk Structures

11/18/16

4

Persistent Store

Given: large array of blocks on disk

Want: some structure to map files to disk blocks

D D D D D D D D
0 7

D D D D D D D D
8 15

D D D D D D D D
16 23

D D D D D D D D
24 31

D D D D D D D D
32 39

D D D D D D D D
40 47

D D D D D D D D
48 55

D D D D D D D D
56 63

Similarity to
Memory?

Same principle:
map logical abstraction to physical resource

Process 1

Process 2

Logical View: Address Spaces

P
hy

si
ca

l V
ie

w

Process 3

11/18/16

5

Allocation
Strategies

Many different approaches
• Contiguous
• Extent-based
• Linked
• File-allocation Tables
• Indexed
• Multi-level Indexed

Questions
• Amount of fragmentation (internal and external)

– freespace that can’t be used
• Ability to grow file over time?
• Performance of sequential accesses (contiguous layout)?
• Speed to find data blocks for random accesses?
• Wasted space for meta-data overhead (everything that isn’t data)?

• Meta-data must be stored persistently too!

Contiguous
Allocation

Allocate each file to contiguous sectors on disk
• Meta-data:
• OS allocates by finding sufficient free space

• Must predict future size of file; Should space be reserved?

• Example: IBM OS/360

A A A B B B B C C C

Fragmentation (internal and external)?

Ability to grow file over time?

Seek cost for sequential accesses?

Speed to calculate random accesses?

Wasted space for meta-data? + Little overhead for meta-data

+ Excellent performance

+ Simple calculation

- Horrible external frag (needs periodic compaction)

- May not be able to without moving

Starting block and size of file

11/18/16

6

Small # of ExtentS

Allocate multiple contiguous regions (extents) per file
• Meta-data:

D A A A B B B B C C C B BD D

A A A B B B B C C C

Fragmentation (internal and external)?

Ability to grow file over time?

Seek cost for sequential accesses?

Speed to calculate random accesses?

Wasted space for meta-data? + Still small overhead for meta-data

+ Still good performance (generally)

+ Still simple calculation

- Helps external fragmentation

- Can grow (until run out of extents)

Small array (2-6) designating each extent
Each entry: starting block and size

Linked Allocation
Allocate linked-list of fixed-sized blocks (multiple sectors)

• Meta-data:

• Examples: TOPS-10, Alto

D A A A B B B B C C C B BD D D DB

Fragmentation (internal and external)?

Ability to grow file over time?

Seek cost for sequential accesses?

Speed to calculate random accesses?

Wasted space for meta-data? - Waste pointer per block

+/- Depends on data layout

- Ridiculously poor

+ No external frag (use any block); internal?

+ Can grow easily

Trade-off: Block size (does not need to equal sector size)

Location of first block of file
Each block also contains pointer to next block

11/18/16

7

File-Allocation Table
(FAT)

Variation of Linked allocation
• Keep linked-list information for all files in on-disk FAT table
• Meta-data: Location of first block of file

• And, FAT table itself

Draw corresponding FAT Table?
Comparison to Linked Allocation

• Same basic advantages and disadvantages
• Disadvantage: Read from two disk locations for every data read
• Optimization: Cache FAT in main memory

– Advantage: Greatly improves random accesses
– What portions should be cached? Scale with larger file systems?

D A A A B B B B C C C B BD D D DB

Indexed Allocation

Allocate fixed-sized blocks for each file
• Meta-data:
• Allocate space for ptrs at file creation time

Advantages
• No external fragmentation
• Files can be easily grown up to max file size
• Supports random access

Disadvantages
• Large overhead for meta-data:

– Wastes space for unneeded pointers (most files are small!)

D A A A B B B B C C C B BD D D DB

Fixed-sized array of block pointers

11/18/16

8

Multi-Level Indexing
Variation of Indexed Allocation

• Dynamically allocate hierarchy of pointers to blocks as needed
• Meta-data: Small number of pointers allocated statically

• Additional pointers to blocks of pointers
• Examples: UNIX FFS-based file systems, ext2, ext3

Comparison to Indexed Allocation
• Advantage: Does not waste space for unneeded pointers

– Still fast access for small files
– Can grow to what size??

• Disadvantage: Need to read indirect blocks of pointers to find
addresses (extra disk read)

– Keep indirect blocks cached in main memory (esp for sequential)

indirect

double
indirect

indirect
triple

indirect

Flexible # of ExtentS
Modern file systems:

Dynamic multiple contiguous regions (extents) per file
• Organize extents into multi-level tree structure

• Each leaf node: starting block and contiguous size
• Minimizes meta-data overhead when have few extents
• Allows growth beyond fixed number of extents

Fragmentation (internal and external)?

Ability to grow file over time?

Seek cost for sequential accesses?

Speed to calculate random accesses?

Wasted space for meta-data? + Relatively small overhead

+ Still good performance

+/- Some calculations depending on
size

+ Both reasonable

+ Can grow

11/18/16

9

Assume Multi-Level
Indexing

Simple approach

More complex file systems build from these basic data structures

On-Disk Structures

- data block

- inode table

- indirect block

- directories

- data bitmap

- inode bitmap

- superblock

11/18/16

10

FS Structs: Empty Disk

D D D D D D D D
0 7

D D D D D D D D
8 15

D D D D D D D D
16 23

D D D D D D D D
24 31

D D D D D D D D
32 39

D D D D D D D D
40 47

D D D D D D D D
48 55

D D D D D D D D
56 63

Assume each block is 4KB

Data Blocks

0 7
D D D D D D D D
8 15

D D D D D D D D
16 23

D D D D D D D D
24 31

D D D D D D D D
32 39

D D D D D D D D
40 47

D D D D D D D D
48 55

D D D D D D D D
56 63

D D D D D D D D

Not actual layout : Examine better layout in next lecture
Purpose: Relative number of each time of block

11/18/16

11

Inodes

0 7
D D D D D D D D
8 15

D D D D D D D D
16 23

D D D D D D D D
24 31

D D D D D D D D
32 39

D D D D D D D D
40 47

D D D D D D D D
48 55

D D D D D D D D
56 63

D D D I I I I I

inode
16

inode
17

inode
18

inode
19

inode
20

inode
21

inode
22

inode
23

inode
24

inode
25

inode
26

inode
27

inode
28

inode
29

inode
30

inode
31

One Inode Block

Each inode is typically 256
bytes (depends on the FS,
maybe 128 bytes)
• 4KB disk block
• 16 inodes per inode block

• How to modify 1 inode?

Static calculation to
determine where particular
inode resides on disk

11/18/16

12

0 7
D D D D D D D D
8 15

D D D D D D D D
16 23

D D D D D D D D
24 31

D D D D D D D D
32 39

D D D D D D D D
40 47

D D D D D D D D
48 55

D D D D D D D D
56 63

D D D I I I I I

Assume 256 byte inodes (16 inodes/block).
What is location for inode with number 0?

Block: inode start + 0/16 = 3 + 0 = 3
Offset within block: 0 % 16 * 256 = 0

0 7
D D D D D D D D
8 15

D D D D D D D D
16 23

D D D D D D D D
24 31

D D D D D D D D
32 39

D D D D D D D D
40 47

D D D D D D D D
48 55

D D D D D D D D
56 63

D D D I I I I I

Assume 256 byte inodes (16 inodes/block).
What is location for inodewith number 4?

Block: inode start + 4/16 = 3 + 0
Offset within block: 4 % 16 * 256 = 4 * 256

11/18/16

13

0 7
D D D D D D D D
8 15

D D D D D D D D
16 23

D D D D D D D D
24 31

D D D D D D D D
32 39

D D D D D D D D
40 47

D D D D D D D D
48 55

D D D D D D D D
56 63

D D D I I I I I

Assume 256 byte inodes (16 inodes/block).
What is location for inodewith number 40?

Block: inode start + 40/16 = 3 + 2 = 5
Offset within block: 40 % 16 * 256 = 8 * 256

Inode

type (file or dir?)
uid (owner)

rwx (permissions)
size (in bytes)
Num Blocks

time (access)
ctime (create)

links_count (# paths)
addrs[N] (N data blocks)

11/18/16

14

Inodes

0 7
D D D D D D D D
8 15

D D D D D D D D
16 23

D D D D D D D D
24 31

D D D D D D D D
32 39

D D D D D D D D
40 47

D D D D D D D D
48 55

D D D D D D D D
56 63

D D D I I I I I

type
uid
rwx
size

blocks
time

ctime
links_count

addrs[N]

Inode: Attempt 1
(Single Level)

Assume single level (just pointers
to data blocks)

What is max file size?
Assume 256-byte inodes (all can
be used for pointers)
Assume 4-byte addrs

256 / 4 = 64 pointers
64 * 4K = 256 KB!

How to get larger files?

11/18/16

15

inode

data data data data

Single Level

inode

indirect indirect indirect indirect

Indirect blocks are stored in
regular data blocks

what if we want to
optimize for small files?

Balanced Tree:
Attempt 2

11/18/16

16

inode

indirectdata data data

Better for small files

Imbalanced Tree:
FFS Solution

Directories

File systems vary

Common design:
Store directory entries in data blocks

Large directories just use multiple data blocks

Use bit in inode to distinguish directories from files

Various formats could be used

- lists

- b-trees

11/18/16

17

Simple Directory List
Example

valid name inode

1
1
1

.
..

foo

134
35
80

1 bar 23

unlink(“foo”)

Allocation

How do we find free data blocks or free inodes?

Free list

Bitmaps

Tradeoffs in next lecture…

11/18/16

18

Bitmaps?

0 7
D D D D D D D D
8 15

D D D D D D D D
16 23

D D D D D D D D
24 31

D D D D D D D D
32 39

D D D D D D D D
40 47

D D D D D D D D
48 55

D D D D D D D D
56 63

D D D I I I I I

Opportunity for
Inconsistency (fsck)

0 7
D D D D D D D D
8 15

D D D D D D D D
16 23

D D D D D D D D
24 31

D D D D D D D D
32 39

D D D D D D D D
40 47

D D D D D D D D
48 55

D D D D D D D D
56 63

D i d I I I I I

11/18/16

19

Superblock

Need to know basic FS configuration metadata, like:

- block size

- # of inodes

Store this in superblock

Super Block

0 7
D D D D D D D D
8 15

D D D D D D D D
16 23

D D D D D D D D
24 31

D D D D D D D D
32 39

D D D D D D D D
40 47

D D D D D D D D
48 55

D D D D D D D D
56 63

S i d I I I I I

11/18/16

20

On-Disk Structures

Super Block

Data Blocks

Inodes

Data Bitmap

Inode Bitmap

directories indirects

Part 2 : Operations

- create file

- write

- open

- read

- close

11/18/16

21

data inode root foo bar root foo
bitmap bitmap inode inode inode data data

create /foo/bar

read
read

read
read

read
write

read
write

write

write

What needs to be read and written?

data inode root foo bar root foo
bitmap bitmap inode inode inode data data

open /foo/bar

data
bar

read

read
read

read
read

11/18/16

22

data inode root foo bar root foo
bitmap bitmap inode inode inode data data

write to /foo/bar (assume file exists and has been opened)

bar
data

read
read

write
write

write

Update bar inode with new data pointers and file size

Update data bitmap to show allocated data blocks

data inode root foo bar root foo
bitmap bitmap inode inode inode data data

read /foo/bar – assume opened

data
bar

read

read
write

Update timestamps in bar inode

11/18/16

23

data inode root foo bar root foo
bitmap bitmap inode inode inode data data

close /foo/bar

data
bar

nothing to do on disk!

Atomic File Update

Say application wants to update file.txt atomically
If crash, should see only old contents or only new contents

1. write new data to file.txt.tmp file

2. fsync file.txt.tmp

3. rename file.txt.tmp over file.txt, replacing it

11/18/16

24

rename

rename (char *old, char *new):

- deletes an old link to a file

- creates a new link to a file

Just changes name of file, does not move data
Even when renaming to new directory (unless…?)

What can go wrong if system crashes at wrong time?

location
size=12

inodes

0

location
size

1

location
size

2

location
size=6

3

…
settings: …

in
od

e
nu

m
be

r

“oldname”: 3, …

11/18/16

25

location
size=12

inodes

0

location
size

1

location
size

2

location
size=6

3

…
settings: …

in
od

e
nu

m
be

r

…

location
size=12

inodes

0

location
size

1

location
size

2

location
size=6

3

…
settings: …

in
od

e
nu

m
be

r

“newname”: 3

11/18/16

26

rename

rename(char *old, char *new):

- deletes an old link to a file

- creates a new link to a file

What if we crash?

FS does extra work to guarantee atomicity; return to this issue
later…

Efficiency

How can we avoid this excessive I/O for basic ops?

Cache for:

- reads

- write buffering

11/18/16

27

Write Buffering

Why does procrastination help?

Overwrites, deletes, scheduling

Shared structs (e.g., bitmaps+dirs) often overwritten.

We decide: how much to buffer, how long to buffer…

- tradeoffs?

Communicating
Requirements: fsync

File system keeps newly written data in memory for awhile

Write buffering improves performance (why?)

But what if system crashes before buffers are flushed?

If application cares:

fsync(int fd) forces buffers to flush to disk, and
(usually) tells disk to flush its write cache too

Makes data durable

