ANNOUNCEMENTS

UNIVERSITY of WISCONSIN-MADISON
Computer Sciences Department

CS 537 Andrea C. Arpaci-Dusseau
ntroduction to Operating System Remzi H. Arpaci-Dusseau

ADVANCED TOPICS:
DISTRIBUTED SYSTEMS AND NES

12/7/16

12/7/16

WHAT IS A

DISTRIBUTED SYSTEM?

WHY GO DISTRIBUTED?

12/7/16

NEW CHALLENGES

PIPE

Writer Reader
Process Process

12/7/16

PIPE

Writer Reader
Process Process

PIPE

Writer Reader
Process Process

12/7/16

PIPE

Writer Reader
Process Process

PIPE

Writer Reader
Process Process

12/7/16

PIPE

Writer Reader
Process Process

PIPE

Writer Reader
Process Process

12/7/16

PIPE

Writer Reader
Process Process

PIPE

Writer Reader
Process Process

12/7/16

PIPE

Writer Reader
Process Process

NETWORK SOCKET

Machine A Machine B

Writer Reader
Process Process

12/7/16

NETWORK SOCKET

Machine A Machine B

Writer Reader
Process Process

NETWORK SOCKET

Machine A Machine B

Writer Reader
Process Process

12/7/16

NETWORK SOCKET

Machine A

Writer
Process

DISTRIBUTED

FILE SYSTEMS

10

12/7/16

GOALS FOR DISTRIBUTED

FILE SYSTEMS

NEFS:
NETWORK FILE SYSTEM

11

12/7/16

OVERVIEW

NES ARCHITECTURE

Client Client
File

Server

Client Local FS Client

| Cacre |

12

12/7/16

GENERAL STRATEGY:
EXPORT EFS

Local FS§ NFS Local FS

Client

..
~.
~.n
-~
~~
~ao
..
~.
-~
-~
~.
-~
-~
..
~-
~e
~

........

.

-
......

Mount: device or fs protocol on naméspace ™™ e g
* /dev/sdal on /

» /dev/sdbl on /backups

* AFS on /home/tyler

13

12/7/16

GENERAL STRATEGY:
EXPORT FS

Local FS§ NFS Local FS

GENERAL STRATEGY:
EXPORT FS

Local FS NFS Local FS

14

12/7/16

OVERVIEW

STRATEGY 1

15

RPC

Machine A

int main(...) {
int x = foo(”helln”);

int foo(char *msg) {
send msg to B
recv msg from B

RPC

Machine B

int foo(char *msg) {

void foo_listener() {
while(1) {

recv, call foo

!
f

12/7/16

16

RPC

Machine A
int main(...) {
int x = foo(”hello”);

int foo(char *msg) {

send msg to B
recv msg from B

Actual calls

Machine B

int foo(char *msg) {

oid foo_listener() {
while(1) {
recv, call foo

RPC

Machine A
int main(...) {
int x = foo(”hello”);
}
int foo(char *msg) {
alicit send msg to B
wrapper recv msg from B

Wrappers

Machine B

int foo(char *msg) {

oid foo_listener() {
while(1) {

recv, call foo

1
)

(ignore how messages are sent for now...)

server
wrapper

12/7/16

17

12/7/16

RPC TOOLS

msgto B

while(1) {

recv, call foo

WRAPPER GENERATION

int foo(char *msg) {
send msg to B

recv msg from B

int foo(cha

void foo_listener()
while(1) {
ecv, call foo

18

12/7/16

WRAPPER GENERATION:

POINTERS

void foo_ r() §

wh

BACK TO NSF:
STRATEGY 1

Local FS|| NFS Local FS

19

12/7/16

FILE DESCRIPTORS

Local FS§ NFS Local FS

FILE DESCRIPTORS

Local FS§ NFS Local FS

20

12/7/16

FILE DESCRIPTORS

Local FS§ NFS Local FS

FILE DESCRIPTORS

Local FS& NFS Local FS

21

12/7/16

STRATEGY 1 PROBLEMS

Local FS NFS

POTENTIAL SOLUTIONS

Local FS NFS

22

12/7/16

STRATEGY 2
PUT ALL INFO IN REQUESTS

ELIMINATE FILE
DESCRIPTORS

Local FS§ NFS Local FS

23

12/7/16

STRATEGY 2
PUT ALL INFO IN REQUESTS

STRATEGY 3:
INODE REQUESTS

24

12/7/16

STRATEGY 4:

FILE HANDLES

CAN NFES PROTOCOL
INCLUDE APPEND?

25

12/7/16

COMMUNICATION

OVERVIEW

int main { int foo(ch
int x = foo(”hello”);
)
}
void foo_listener()
while(1) {

recv, call foo

RAW MESSAGES: UDP

26

12/7/16

RAW MESSAGES: UDP

RELIABLE MESSAGES:
LAYERING STRATEGY

27

12/7/16

TECHNIQUE #1: ACK

ACK

28

12/7/16

TECHNIQUE #2: TIMEOUT

LOST ACK: ISSUE 1

29

12/7/16

LOST ACK: ISSUE 1

LOST ACK: ISSUE 2

30

Case 1

Case 2

Sender Receiver
[send message] — %

[timeout]

Sender Receiver

[send message] T [recv message]

X —— [send ack]
[timeout]

ACK: message received exactly once

Lost ACK:

How can sender
tell between these
two cases?

No ACK: message may or may not have been received

What if message is command to increment counter?

PROPOSED SOLUTION

12/7/16

31

12/7/16

ASIDE:

TWO GENERALS PROBLEM

RELIABLE MESSAGES:
LAYERING STRATEGY

32

12/7/16

TECHNIQUE #3: RECEIVER
REMEMBERS MESSAGES

SOLUTIONS

33

12/7/16

TCP

RPC OVER TCP?

34

12/7/16

RPC OVER TCP?

Sender Receiver

11
[tciacasler]ld] Why wasteful?

[recv]

[ack]

[exec call]

[return]
[tcp send]

RPC OVER UDP

Sender Receiver
[call]
[tcp send]
[recv]
[ack]

[exec call]

[return]
[tcp send]

35

12/7/16

SO: CAN NES PROTOCOL

INCLUDE APPEND?

IDEMPOTENT OPERATIONS

36

12/7/16

PWRITE IS IDEMPOTENT

APPEND IS NOT
IDEMPOTENT

37

12/7/16

WHAT OPERATIONS ARE

IDEMPOTENT?

STRATEGY 4:
FILE HANDLES

38

12/7/16

STRATEGY 5:

CLIENT LOGIC

FILE DESCRIPTORS

Local FS§ NFS Local FS

th=<...>
off=123

39

12/7/16

OVERVIEW

CACHE CONSISTENCY

40

12/7/16

WRITE BUFFERS

NFS Local FS
write buffer write buffer

SERVER WRITE BUFFER
LOST

erte A to g SE€rver mem: ...
write B to 1 server disk: ...

write C to 2

client:

server acknowledges write before write is pushed to disk

41

SERVER WRITE BUFFER
LOST

client:

servermem: ‘A B [C
write A to 0

write B to 1 serverdisk: A ' B | C

write C to 2

server acknowledges write before write is pushed to disk

SERVER WRITE BUFFER
LOST

client:

write A to 0 servermem: ' X B [C

write B to 1

write C to 2 serverdisk: '/A B | C

write X to 0

server acknowledges write before write is pushed to disk

12/7/16

42

12/7/16

SERVER WRITE BUFFER
LOST

client:

write A to 0 servermem: ' X B [C

write B to 1

write C to 2 serverdisk: ' X B | C

write X to 0

server acknowledges write before write is pushed to disk

SERVER WRITE BUFFER
LOST

client:

write A to 0 servermem: ' X 'Y [C

write B to 1

write C to 2 serverdisk: ' X B | C

write X to 0
write Y to 1

server acknowledges write before write is pushed to disk

43

12/7/16

SERVER WRITE BUFFER
LOST

client:

write A to 0 server mem:

write B to 1

write C to 2 serverdisk: ' X B | C

f
write X to 0 crash!

write Y to 1

server acknowledges write before write is pushed to disk

SERVER WRITE BUFFER
LOST

client:

write A to 0 server mem:

write B to 1

write C to 2 serverdisk: ' X B | C

write X to 0

write Y to 1

server acknowledges write before write is pushed to disk

44

SERVER WRITE BUFFER

client:

write
write

write

write
write

write

A to

LOST

0 server mem: Z

to 1

to

to

2 serverdisk: | X B C

to 1

Z to

2

server acknowledges write before write is pushed to disk

SERVER WRITE BUFFER

client:

write
write

write

write
write

write

A to

to
to

to

Y to
Z to

LOST

0 server mem: Y4

1

2 serverdisk: [X B | Z

0 Problem:

1 No write failed, but disk state doesn’t

match any point in time

Solutions????

12/7/16

45

12/7/16

WRITE BUFFERS

NFS Local FS
write buffer

WRITE BUFFERS

NFS Local FS
write buffer write buffer

46

12/7/16

DISTRIBUTED CACHE

Local FS
cache: A

CACHE

NFS Local FS
cache: A cache: A

47

12/7/16

CACHE

NFS Local FS
cache: A cache: A

CACHE

NFS Local FS NFS
cache: B cache: A cache: A

48

12/7/16

CACHE

NFS Local FS
cache: B cache: B

CACHE

NFS Local FS NFS
cache: B cache: B cache: B

49

12/7/16

PROBLEM I
UPDATE VISIBILITY

NFS Local FS
cache: B cache: A

PROBLEM 2.
STALE CACHE

Local FS
cache: B

50

12/7/16

STALE CACHE SOLUTION

Local FS NFS
cache: B cache: A

MEASURE THEN BUILD

51

12/7/16

REDUCING STAT CALLS

Local FS NFS
cache: B cache: A

NES SUMMARY

52

12/7/16

AES GOALS

AFS DESIGN

53

VOLUME ARCHITECTURE

Server
Server
V2 V4
V1
V5|Vé6
Server

V3

collection of servers store different volumes that together form directory tree

VOLUME ARCHITECTURE

Server

V2
Vi

Server

volumes may be moved by
an administrator.

Server

12/7/16

54

VOLUME ARCHITECTURE

Server

V2
Vi

Server

Server volumes may be moved by
an administrator.

VOLUME ARCHITECTURE

Server
Server

\%
Client /

Server

V2 V4
1
V5
V6

\

V3

Client library gives seamless view of directory tree by automatically finding
volumes

Communication via RPC
Servers store data in local file systems

12/7/16

55

12/7/16

AFS CACHE CONSISTENCY

UPDATE VISIBILITY

NFS Local FS NFS
cache: A cache: A cache: A

56

12/7/16

UPDATE VISIBILITY

NFS Local FS
cache: B cache: A

UPDATE VISIBILITY

57

12/7/16

UPDATE VISIBILITY

CACHE CONSISTENCY

NFS Local FS NFS
cache: B cache: B cache: A

58

12/7/16

STALE CACHE

STALE CACHE

Local FS NFS
cache: B cache: A

59

12/7/16

CALLBACKS: DEALING

WITH STATE

CLIENT CRASH

Local FS NFS
cache: B cache: A

60

12/7/16

LOW SERVER MEMORY

Local FS

cache: B

SERVER CRASHES

61

12/7/16

PREFETCHING

WHOLE-FILE CACHING

62

12/7/16

AFS SUMMARY

AES VS NES PROTOCOLS

Client A

fd = open(“file A);
read(fd, block1);
read(fd, block2);

read(fd, block1);
read(fd, block2);

fd = open(“file A");
| write(fd, block1);

read(fd, block1);

read(fd, blockl);
read(fd, block2);
close(fd);

fd = open(“fileA");
read(fd, block1);
close(fd);

close(fd);

63

NES PROTOCOL

Client A

ClientB

Server Action?

fd » open(“file A"); ——

read(fd, block1);

=

read(fd, block2); — o

=

rond

qu' block1): Cures o ited

read(fd, block2); oW ver

_ e

by ek wie local

o cetet |

fd » open(“file A"); ——

i

read(fd, block1); $55

write(fd, block1); Jl0
¥t

Gt

Ler!. worke A A

reah L™

read €

close(fd);

fd = open(“fileA”);

read(fd, block1); (el - ¥

i

e

close(fd);

AES PROTOCOL

| Client A

Client B

Server Action?

fd = open(*file A); 7

A uyp ,,\lgtu\.A

read(fd, block1);

TN

read(fd, block2); |1, .1
read(fd, block1); |

read(fd, block2);

fd = open(“file A”); ——

—"bbd‘T ¢ wld e

write(fd, block1); evd

all o4 A

read(fd, blockl); lecall

close(fd);

read(fd, block1); Lecale-

(gak

read(fd, block2);
close(fd); M

fd = open(“fileA”); .}F

read(fd, block1);

close(fd); &

— o '

12/7/16

64

