
9/23/16

1

Virtualizing Memory:
Paging

Questions answered in this lecture:

Review segmentation and fragmentation

What is paging?

Where are page tables stored?

What are advantages and disadvantages of paging?

UNIVERSITY of WISCONSIN-MADISON
Computer Sciences Department

CS 537
Introduction to Operating Systems

Andrea C. Arpaci-Dusseau
Remzi H. Arpaci-Dusseau

Announcements
• P1: Due Friday, 5pm

• Lots of test scripts available
• Lots of office hours through Friday
• P2 available immediately after (shell and MLFQ scheduler)

• Exam 1: Two weeks + 1 day, Wed 10/5 7:15pm – 9:15pm
• Class time on Tuesday for review
• Look at homeworks / simulations and sample questions
• Conflicts? Use form to notify us

• Discussion Section
• Tell us what topics you want to learn more about!

• Reading for today:
• Chapter 18

9/23/16

2

Review:
Match Description

Name of approach
(choose 1 best for each):
Segmentation

Static Relocation

Base

Base+Bounds

Time Sharing

Description

• one process uses RAM at a time

• dynamic approach that verifies address
is in one valid range for process

• rewrite code and addresses before
running

• add per-process starting location to virt
addr to obtain phys addr

• several base+bound pairs per process

Review: Segmentation

Assume 14-bit virtual addresses, high 2 bits indicate segment

Segments:
0=>code
1=>heap
2=>stack.

0x0000 0x1000 0x2000 0x3000 0x4000

0x4000 0x5000 0x6000 0x7000 0x8000

Virt Mem

Phys Mem

? ? ?
Code Heap Stack

Seg Base Bounds

0

1

2

0xfff

0xfff
0x7ff

0x4000

0x5800

0x6800

Where dose segment table live?

All registers, MMU

9/23/16

3

Review:
Memory Accesses

0x0010: movl 0x1100, %edi
0x0013: addl $0x3, %edi
0x0019: movl %edi, 0x1100

Physical Memory Accesses?
1) Fetch instruction at logical addr 0x0010

• Physical addr:

Exec, load from logical addr 0x1100

• Physical addr:

2) Fetch instruction at logical addr 0x0013

• Physical addr:

Exec, no load

3) Fetch instruction at logical addr 0x0019

• Physical addr:

Exec, store to logical addr 0x1100

• Physical addr:

Seg Base Bounds

0 0x4000 0xfff

1 0x5800 0xfff

2 0x6800 0x7ff

0x4010

0x5900

0x4013

0x4019

0x5900

%rip: 0x0010

Total of 5 memory references (3 instruction fetches, 2 movl’s)

Problem:
Fragmentation

Definition: Free memory that can’t be usefully allocated

Why?
• Free memory (hole) is too small and scattered
• Rules for allocating memory prohibit using this free space

Types of fragmentation
• External: Visible to allocator (e.g., OS)
• Internal: Visible to requester (e.g., if must allocate at some granularity)

Segment A

Segment C

Segment D

Segment B

Segment E

No contiguous space!

useful

free

Allocated to requester

Internal

External

9/23/16

4

Paging
Goal: Eliminate requirement that address space is contiguous

• Eliminate external fragmentation
• Grow segments as needed

Idea: Divide address spaces and physical memory into fixed-sized pages
• Size: 2n, Example: 4KB
• Physical page: page frame

Process 1

Process 2
Logical View

P
hy

si
ca

l V
ie

w

Process 3

Translation of
Page Addresses

How to translate logical address to physical address?
• High-order bits of address designate page number
• Low-order bits of address designate offset within page

page number

frame number

page offset

page offset

Logical address

Physical address

32 bits

translate

20 bits 12 bits

No addition needed; just append bits correctly…

How does format of address space determine number of pages and size of pages?

9/23/16

5

Quiz: Address Format

Page Size Low Bits (offset)

16 bytes 4

1 KB 10

1 MB 20

512 bytes 9

4 KB 12

Given known page size, how many bits are needed in address to specify offset in page?

Quiz: Address Format

Page Size Low Bits
(offset)

Virt Addr Bits High Bits
(vpn)

16 bytes 4 10 6

1 KB 10 20 10

1 MB 20 32 12

512 bytes 9 16 5

4 KB 12 32 20

Given number of bits in virtual address and bits for offset,
how many bits for virtual page number?

Correct?

7

9/23/16

6

Quiz: Address Format

Page Size Low Bits
(offset)

Virt Addr Bits High Bits
(vpn)

16 bytes 4 10 6

Virt Pages

1 KB 10 20 10

1 MB 20 32 12

512 bytes 9 16 7

4 KB 12 32 20

Given number of bits for vpn, how many virtual pages can there be in an address space?

64

1 K

4 K

128

1 M

VirtUAL => Physical PAGE
Mapping

How should OS translate VPN to PPN?

For segmentation, OS used a formula (e.g., phys addr = virt_offset + base_reg)

For paging, OS needs more general mapping mechanism

What data structure is good?

0 1 0 1 0 1

VPN offset

1 1 0 1 0 11 0

PPN offset

Addr Mapper

Big array: pagetable

Number of bits in
virtual address
format does not
need to equal
number of bits in
physical address
format

9/23/16

7

The Mapping

Virt Mem

Phys Mem

P2 P3P1

Virt Mem

Phys Mem

P2 P3

0 1 2 3 4 5 6 7 8 9 10 11

P1

Page Tables:

P1
3
1
7
10

P2
0
4
2
6

P3

Quiz:
Fill in Page Table

8

5

9

11

0 1 2 3

9/23/16

8

Where Are Pagetables
Stored?

How big is a typical page table?
- assume 32-bit address space
- assume 4 KB pages
- assume 4 byte page table entries (PTEs)

Final answer: 2 ^ (32 - log(4KB)) * 4 = 4 MB
• Page table size = Num entries * size of each entry
• Num entries = num virtual pages = 2^(bits for vpn)
• Bits for vpn = 32– number of bits for page offset

= 32 – lg(4KB) = 32 – 12 = 20
• Num entries = 2^20 = 1 MB
• Page table size = Num entries * 4 bytes = 4 MB

Implication: Store each page table in memory
• Hardware finds page table base with register (e.g., CR3 on x86)

What happens on a context-switch?
• Change contents of page table base register to newly scheduled process
• Save old page table base register in PCB of descheduled process

Other PT info

What other info is in pagetable entries besides translation?
• valid bit
• protection bits
• present bit (needed later)
• reference bit (needed later)
• dirty bit (needed later)

Pagetable entries are just bits stored in memory
• Agreement between hw and OS about interpretation

9/23/16

9

Break

• What is your strategy for studying for exams?

• What is the best sub or sandwich shop in Madison?

Memory Accesses
with Pages

0x0010: movl 0x1100, %edi
0x0013: addl $0x3, %edi
0x0019: movl %edi, 0x1100

Assume PT is at phys addr 0x5000
Assume PTE’s are 4 bytes
Assume 4KB pages
How many bits for offset?

Simplified view
of page table

2
0
80
99

Pagetable is slow!!! Doubles memory references

Physical Memory Accesses with Paging?
1) Fetch instruction at logical addr 0x0010;

vpn?

• Access page table to get ppn for vpn 0

• Mem ref 1: 0x5000

• Learn vpn 0 is at ppn 2

• Fetch instruction at 0x2010 (Mem ref 2)

Exec, load from logical addr 0x1100; vpn?

• Access page table to get ppn for vpn 1

• Mem ref 3: 0x5004

• Learn vpn 1 is at ppn 0

• Movl from 0x0100 into reg (Mem ref 4)

12

Old: How many mem refs with segmentation?

5 (3 instrs, 2 movl)

0x5000

0x5004
0x5008

0x500c

9/23/16

10

Advantages of
Paging

No external fragmentation
• Any page can be placed in any frame in physical memory

Fast to allocate and free
• Alloc: No searching for suitable free space
• Free: Doesn’t have to coallesce with adjacent free space
• Just use bitmap to show free/allocated page frames

Simple to swap-out portions of memory to disk (later lecture)
• Page size matches disk block size
• Can run process when some pages are on disk
• Add “present” bit to PTE

Disadvantages of
Paging

Internal fragmentation: Page size may not match size needed by process
• Wasted memory grows with larger pages
• Tension? Why not make pages very small?

Additional memory reference to page table --> Very inefficient
• Page table must be stored in memory
• MMU stores only base address of page table
• Solution: Add TLBs (future lecture)

Storage for page tables may be substantial
• Simple page table: Requires PTE for all pages in address space

• Entry needed even if page not allocated
• Problematic with dynamic stack and heap within address space
• Page tables must be allocated contiguously in memory
• Solution: Combine paging and segmentation (future lecture)

Stack

Code

Heap

9/23/16

11

HomeWork Exercises

• Look at relocation.py
• Base+bounds dynamic relocation

• Look at page-linear-translate.py
• Basic page tables

