
ZFS
The Last Word In File Systems

Jeff Bonwick
Bill Moore

(modifed by yupu for CS736)

Trouble with Existing Filesystems

No defense against silent data corruption

Any defect in disk, controller, cable, driver, laser, or firmware can
corrupt data silently; like running a server without ECC memory

Brutal to manage

Labels, partitions, volumes, provisioning, grow/shrink, /etc files...

Lots of limits: filesystem/volume size, file size, number of files,
files per directory, number of snapshots ...

Different tools to manage file, block, iSCSI, NFS, CIFS ...

Not portable between platforms (x86, SPARC, PowerPC, ARM ...)

Dog slow

Linear-time create, fat locks, fixed block size, naïve prefetch,
dirty region logging, painful RAID rebuilds, growing backup time

ZFS Objective

Figure out why storage has gotten so complicated

Blow away 20 years of obsolete assumptions

Design an integrated system from scratch

End the Suffering

ZFS Overview

Pooled storage

Completely eliminates the antique notion of volumes

Does for storage what VM did for memory

Transactional object system

Always consistent on disk – no fsck, ever

Universal – file, block, iSCSI, swap ...

Provable end-to-end data integrity

Detects and corrects silent data corruption

Historically considered “too expensive” – no longer true

Simple administration

Concisely express your intent

FS/Volume Model vs. Pooled Storage

Traditional Volumes
Abstraction: virtual disk

Partition/volume for each FS

Grow/shrink by hand

Each FS has limited bandwidth

Storage is fragmented, stranded

ZFS Pooled Storage
Abstraction: malloc/free

No partitions to manage

Grow/shrink automatically

All bandwidth always available

All storage in the pool is shared

Storage PoolVolume

FS

Volume

FS

Volume

FS ZFS ZFS ZFS

Copy-On-Write

1. Initial block tree 2. COW some blocks

4. Rewrite uberblock (atomic)3. COW indirect blocks

Transactional Object System

Transaction

Trends in Storage Integrity

Uncorrectable bit error rates have stayed roughly constant

1 in 1014 bits (~12TB) for desktop-class drives

1 in 1015 bits (~120TB) for enterprise-class drives (allegedly)

Bad sector every 8-20TB in practice (desktop and enterprise)

Drive capacities doubling every 12-18 months

Number of drives per deployment increasing

 Rapid increase in error rates

Both silent and “noisy” data corruption becoming
more common

Cheap flash storage will only accelerate this trend

End-to-End Data Integrity in ZFS

Disk Block Checksums

Checksum stored with data block

Any self-consistent block will pass

Can't detect stray writes

Inherent FS/volume interface limitation

Data Data

Address

Checksum Checksum

Address

Data

Checksum

Data

Checksum

ZFS Data Authentication

Checksum stored in parent block pointer

Fault isolation between data and checksum

Checksum hierarchy forms
self-validating Merkle tree

ZFS validates the entire I/O path

Bit rot

Phantom writes

Misdirected reads and writes

DMA parity errors

Driver bugs

Accidental overwrite

Address

Checksum Checksum

Address

Disk checksum only validates media

Bit rot

Phantom writes

Misdirected reads and writes

DMA parity errors

Driver bugs

Accidental overwrite

• • •

Traditional Mirroring

Application

xxVM mirror

1. Application issues a read.
Mirror reads the first disk,
which has a corrupt block.
It can't tell.

2. Volume manager passes
bad block up to filesystem.
If it's a metadata block, the
filesystem panics. If not...

3. Filesystem returns bad data
to the application.

FS

Application

xxVM mirror

FS

Application

xxVM mirror

FS

Self-Healing Data in ZFS

Application

ZFS mirror

Application

ZFS mirror

Application

ZFS mirror

1. Application issues a read.
ZFS mirror tries the first disk.
Checksum reveals that the
block is corrupt on disk.

2. ZFS tries the second disk.
Checksum indicates that the
block is good.

3. ZFS returns known good
data to the application and
repairs the damaged block.

Ditto Blocks

Data replication above and beyond mirror/RAID-Z

Each logical block can have up to three physical blocks

Different devices whenever possible

Different places on the same device otherwise (e.g. laptop drive)

All ZFS metadata 2+ copies

Small cost in latency and bandwidth (metadata 1% of data)

Explicitly settable for precious user data

Detects and corrects silent data corruption

In a multi-disk pool, ZFS survives any non-consecutive disk failures

In a single-disk pool, ZFS survives loss of up to 1/8 of the platter

ZFS survives failures that send other filesystems to tape

Creating Pools and Filesystems

Create a mirrored pool named “tank”

zpool create tank mirror c2d0 c3d0

Create home directory filesystem, mounted at /export/home

zfs create tank/home
zfs set mountpoint=/export/home tank/home

Create home directories for several users
Note: automatically mounted at /export/home/{ahrens,bonwick,billm} thanks to inheritance

zfs create tank/home/ahrens
zfs create tank/home/bonwick
zfs create tank/home/billm

Add more space to the pool

zpool add tank mirror c4d0 c5d0

ZFS Snapshots

Read-only point-in-time copy of a filesystem

Instantaneous creation, unlimited number

No additional space used – blocks copied only when they change

Accessible through .zfs/snapshot in root of each filesystem

Allows users to recover files without sysadmin intervention

Take a snapshot of Mark's home directory

zfs snapshot tank/home/marks@tuesday

Roll back to a previous snapshot

zfs rollback tank/home/perrin@monday

Take a look at Wednesday's version of foo.c

$ cat ~maybee/.zfs/snapshot/wednesday/foo.c

