\MS%UL*DF‘\“DAQS

Mach

Machine-Independent Virtual Memory Management for Paged Uniprocessor and
Multiprocessor Architectures, by R. Rashid and A. Tevanian and M. Young and D.
Golub and R. Baron and D. Black and W. Bolosky and]. Chew,

Proceedings of the 2nd International Conference on Architectural Support for
Programming Languages and Operating System (ASPLOS), 1987.

1. What problem did Mach address?
Traditonal UNIX: had to rewrite large portions of VM system for each platform

2. Ata high-level, what is their solution?
Separate machine independent from machine dependent components

Keep machine dependent components (the parts that have to change) as simple as
possible (treat as a cache in many cases)

Use proper data structures to help with mapping:

Goal: Support v.a. -> memory object -> p.a. mapping efficiently

3. What 5 basic abstractions did Mach rely upon? What needs to be implemented
efficiently for an extensible system?

a.

b.

task: process - v.a. space, unit of protection for system resources
thread: unit of CPU utilization (PC)
port: communication channel; logical queue for messages; protected by
kernel: send and receive.
Message: typed collection of data

a. Adv: helps with extensible systems and distributed systems

b. Requirements: efficient copy-on-write for local environments

Memory object: collection of data managed by a server, mapped into address
space of task

4. What functionality is provided to manage an address space?

a. Allocate/deallocate virtual memory (grow or shrink) fill w/zeros or copy

b. Specify inheritance for child tasks (shared, copy, or none) - page level
i. When create child, defines how a.s. is initialized
ii. What would UNIX for() specify? - copy
1. How to make efficient? Use copy-on-write for address
map(default)

c. Setprotection of region - page level
i. r/w/x - enforcement requires hardware support
ii. current: level enforced by hardware
iii. maximum: can’t be raised by process, current <= maximum
iv. mask away rights for safety

d. Pagein and pagout (read and write) - manage as a pager

5. What 4 primary data structures are used for memory management in Mach?
Resident page table: tracks info about machine independent pages

Addrss map: doubly-linked list of map entries, describes mapping from range of va
to region of memory object

Memory object: unit of backing storage managed by kernel or user task

Pmap: machine dependent mapping data structure (hardware defined!)

6. What is the purpose of the resident page table? How is it organized? What info
is tracked for each page?

a. Tells us state of each (machine independent page) of physical memory
b. Table indexed by physical page number:
i. Modified (to write back), reference bits (replacement policy)

7. Page entries from the resident page table may simultaneously be linked in 3
different lists. What are the 3 lists and what are their purposes?

a. Memory object list: all pages within object
i. Why? Simplify deallocation and copying of object

b. Memory allocation queues: free, reclaimable, and allocated pages for
paging daemon (help find appropriate page)

c. Object/offset hash bucket: Why?
i. Get pa fast on “page fault” - N
ii. How else could find? Search through memory object list
iii. Why must resident table handle page fault?
1. Page could still be in physical memory
2. HW (pmap) doesn’t know all translations

-

8. Whatis the purpose of the address map per task address space? How is it
organized? What are the advantages of this structure? How many entries does it

typically contain?
a. Purpose: maps va -> byte offsets in memory objects
b. Doubly-linked list of address map entries, each of which maps
continguous ranges (sorted), all have same inherieance and protection
attributes
c. How many entries typically?
i. Code, stack, heap (init and uninit)
d. Advantages?
i. Small
ii. Does not penalize large, sparse address spaces
iii. Quick to go from v.a. to memory object
e. When accessed?

Page fault lookup (If must get data from memory object itself)
Copy/protection changes
Alloc/dealloc address ranges

Per ‘\‘OS\/\

N WG
wy-\

Sy =
e_véw a. é B

. A 0ep D

9. What is the purpose of memory objects? What is the purpose of the reference
counter for each memory object? What handles page faults for each memory

object?

a. Repository for data, indexed by byte (backing store); read or write on it
b. Ref count: free when no more mapped references to it; keep popular ones
around after gone; What is this?
i. File cache
c. What handles page faults for each memory object?
i. Pager; identified by pagin-object port

10. Why is efficient copy-on-write needed in Mach? How does copy-on-write work?
What inefficiencies can their approach cause? How does read/write sharing
work?

Mach performs lots of IPC — microkernel for multiprocessors.

Copy-on-write lets messages be shared efficiently

Use shadow objects which are 2nd-level in address map to point to memory object
(can remove when no sharing)

Read write sharing: Add another level of indirection to AM entry - need to be .
able to share protection and see all changes \ N ! (g f -*""””’i

Loy

&l oueic«ﬁ)
Aok ohaag

‘\P’T\\ (ead. Sawme C\‘r\ﬁ“) V\E@Nv& CW\&Q}\—‘ \PCC:\\&\A a\ auq)kaqlo

2y QW wrides Z(ﬁ"x\(d,\;\éx sec X', qvifv’;,x?
\netcient:

@ C Loks aviorher duld

S y (DV\% C\AQih
Ao N~ X &
3 Parerdt worides &

What is the purpose of the pmap? Why doesn’t pmap need to contain every
virtual to physical mapping? What is the minimal pmap?

Represents machine dependent parts; manages whatever the hardware interacts
with

Only needs to contain what is needed for efficient, correct operation, does need to
be complete - just a kcache AR

KEY to supporting sparse, large vim while reducing size of page tables
Can get other mappings by going through address map and resident page table map

Minimal pmap: TLB entries

11. How were large page tables dealt with in VAX/VMS? How does Mach on VAX
deal with large page tables?

VMS: Place page tables in kernel space so could be paged-bsge Mms»&(-eA—

Mach: pmap does not all have to be active; only those pages currently resident are
interesting; address map handles sparse spaces better than page tables

Use Mach address map on page fault, fill in pmap

12.To put all the data structures together, describe what happens on a “page fault”.
Implies translation is not in pmap

1) Check if in physical memory; how?
a. Va->memory object->PA
b. Use address map to find memory object
c. Useresident page table info - object/offset hash bucket to get physical
page
2) If present, inform pmap

3) Notin physical memory
a. Get free page (from res pt free list)
i. Ifnone? Look at reference bits for pages and make some free
(might require writing out modified page)

b. Read dataffoprmermerse ‘.5

c. Putallocated page in:
i. Resdient page table: Memory object list
ii. Alloclist
iii. Object/offset hash

d. Update pmap e ~pra,

13. Conclusion?

Influential microkernel

Most well-known, full developed

Huge research project, commercially available
Influenced others, MacOS X

Two specific contributions:

IPC well-done - copy on write and ports

probably only care about this when really have to deliver OS on many different HW

Portability - good job abstracting independent and dependent components - MﬂA W[LC-\
4
platforms
>
Problem: VM performance isn’t critical
Nice functionality, good modularity
No benefit to user-provided pagers

