Mach

Machine-Independent Virtual Memory Management for Paged Uniprocessor

and Multiprocessor Architectures,

by R. Rashid and A. Tevanian and M. Young and D. Golub and R. Baron and D.
Black and W. Bolosky and J. Chew,

Proceedings of the 2nd International Conference on Architectural Support for
Programming Languages and Operating System (ASPLOS), 1987.

=

What problem did Mach address?

At a high-level, what is their solution?

3. What 5 basic abstractions did Mach rely upon? What needs to be implemented
efficiently for an extensible system?

4. What functionality is provided to manage an address space?

5. What 4 primary data structures are used for memory management in Mach?

6. What is the purpose of the resident page table? How is it organized? What info
is tracked for each page?

7. Page entries from the resident page table may simultaneously be linked in 3
different lists. What are the 3 lists and what are their purposes?

8. What is the purpose of the address map per task address space? How is it
organized? What are the advantages of this structure? How many entries does it
typically contain?

9. What is the purpose of memory objects? What is the purpose of the reference
counter for each memory object? What handles page faults for each memory
object?

10. Why is efficient copy-on-write needed in Mach? How does copy-on-write work?
What inefficiencies can their approach cause? How does read/write sharing
work?

11. What is the purpose of the pmap? Why doesn’t pmap need to contain every
virtual to physical mapping? What is the minimal pmap?

12. How were large page tables dealt with in VAX/VMS? How does Mach on VAX
deal with large page tables?

13. To put all the data structures together, describe what happens on a “page fault”.

14. Conclusion?

N



