
Optimistic
Crash Consistency

Vijay Chidambaram

CS 736 Graduate Operating Systems

Wednesday, October 9, 13

The Crash Consistency
Problem

A single file-system operation updates
multiple on-disk data structures

The system may crash in the middle of
updating these structures

This leaves the file-system partially
(incorrectly) updated

2
Wednesday, October 9, 13

1 0 0

An Example

MEMORY

Data

DISK

Inode

Data bitmap

3
Wednesday, October 9, 13

1 0 0

An Example

MEMORY

Data

DISK

Inode

Data bitmap

3
Wednesday, October 9, 13

1 0 0

An Example

MEMORY

Data

DISK

Inode

Data bitmap

3
Wednesday, October 9, 13

1 0 0

An Example

MEMORY

Data

DISK

Inode

Data bitmap

3
Wednesday, October 9, 13

1 0 0

An Example

MEMORY

Data

DISK

Inode

Data bitmap

3
Wednesday, October 9, 13

1 0 0

An Example

MEMORY

Data

DISK

Inode

Data bitmap

Inode Data 1 1 0

3
Wednesday, October 9, 13

1 0 0

An Example

MEMORY

Data

DISK

Inode

Data bitmap

Inode Data 1 1 0

3
Wednesday, October 9, 13

1 0 0

An Example

MEMORY

Data

DISK

Inode

Data bitmap

Inode Data 1 1 0

Data

3
Wednesday, October 9, 13

1 0 0

An Example

MEMORY

Data

DISK

Inode

Data bitmap

Inode Data 1 1 0

Data

3
Wednesday, October 9, 13

1 0 0

An Example

MEMORY

Data

DISK

Inode

Data bitmap

Inode Data 1 1 0

X

Data

3
Wednesday, October 9, 13

1 0 0

An Example

MEMORY

Data

DISK

Inode

Data bitmap

Inode Data 1 1 0

X

Problem: upon a crash, data structures on disk are
partially updated

Data

3
Wednesday, October 9, 13

Current Solutions to
Crash Consistency

4
Wednesday, October 9, 13

Current Solutions to
Crash Consistency

File-system check [McKusick84]

Journaling [Hagmann87]

Log structured file system [Rosenblum92]

Copy-on-write file system [Hitz94]

Soft Updates [Ganger94]

4
Wednesday, October 9, 13

Journaling

5
Wednesday, October 9, 13

Journaling

Before updating the file system, write a note
describing the update first

5
Wednesday, October 9, 13

Journaling

Before updating the file system, write a note
describing the update first

Make sure note is safely on disk

5
Wednesday, October 9, 13

Journaling

Before updating the file system, write a note
describing the update first

Make sure note is safely on disk

Once the note is safe, update the file system

5
Wednesday, October 9, 13

Journaling

Before updating the file system, write a note
describing the update first

Make sure note is safely on disk

Once the note is safe, update the file system

If the above step is interrupted, read note
and do step again

5
Wednesday, October 9, 13

Journaling

Before updating the file system, write a note
describing the update first

Make sure note is safely on disk

Once the note is safe, update the file system

If the above step is interrupted, read note
and do step again

5
Wednesday, October 9, 13

Journaling: an example

6

FILE SYSTEM

DISK

APPLICATION

FILEDATA

Wednesday, October 9, 13

Journaling: an example

6

FILE SYSTEM

DISK

D JM

APPLICATION

FILEDATA

Wednesday, October 9, 13

Journaling: an example

6

FILE SYSTEM

DISK

D JM

APPLICATION

FILEDATA

DATA

Wednesday, October 9, 13

Journaling: an example

6

FILE SYSTEM

DISK

D JM

APPLICATION

FILEDATA

DATA JFILE

Wednesday, October 9, 13

Journaling: an example

6

FILE SYSTEM

DISK

D JM

APPLICATION

FILEDATA

DATA JFILE

JOURNAL
WRITE

Wednesday, October 9, 13

Journaling: an example

6

FILE SYSTEM

DISK

D JM

APPLICATION

FILEDATA

DATA JFILE

Wednesday, October 9, 13

Journaling: an example

6

FILE SYSTEM

DISK

D JM JC

APPLICATION

FILEDATA

DATA JFILE JCOMMIT

Wednesday, October 9, 13

Journaling: an example

6

FILE SYSTEM

DISK

D JM JC

APPLICATION

FILEDATA

DATA JFILE JCOMMIT

JOURNAL
COMMIT

Wednesday, October 9, 13

Journaling: an example

6

FILE SYSTEM

DISK

D JM JC

APPLICATION

FILEDATA

DATA JFILE JCOMMIT

Wednesday, October 9, 13

Journaling: an example

6

FILE SYSTEM

DISK

D JM JC M

APPLICATION

FILEDATA

DATA JFILE JCOMMIT

Wednesday, October 9, 13

Journaling: an example

6

FILE SYSTEM

DISK

D JM JC M

APPLICATION

FILEDATA

DATA JFILE JCOMMIT FILE

Wednesday, October 9, 13

Journaling: an example

6

FILE SYSTEM

DISK

D JM JC M

APPLICATION

FILEDATA

DATA JFILE JCOMMIT FILE

JOURNAL
CHECKPOINT

Wednesday, October 9, 13

Ordered Writes
Journaling is built upon writing to disk in the
correct order:

- Journal Writes

- Journal Commit

- Journal Checkpointing

Ex: if checkpointing happens before commit
and transaction fails, file system is corrupted

7
Wednesday, October 9, 13

Ordering Writes in Disks
Modern disk drives
have on-board RAM
caches

Writes are first
buffered, then
destaged to the
non-volatile platter

8

MEMORY

DISK
CACHE

DISK
PLATTER

Wednesday, October 9, 13

Ordering Writes in Disks
Modern disk drives
have on-board RAM
caches

Writes are first
buffered, then
destaged to the
non-volatile platter

8

MEMORY

DISK
CACHE

DISK
PLATTER

write(A)

Wednesday, October 9, 13

Ordering Writes in Disks
Modern disk drives
have on-board RAM
caches

Writes are first
buffered, then
destaged to the
non-volatile platter

8

MEMORY

DISK
CACHE

DISK
PLATTER

write(A)

Wednesday, October 9, 13

Ordering Writes in Disks
Modern disk drives
have on-board RAM
caches

Writes are first
buffered, then
destaged to the
non-volatile platter

8

MEMORY

DISK
CACHE

DISK
PLATTER

write(A) write(B)

Wednesday, October 9, 13

Ordering Writes in Disks
Modern disk drives
have on-board RAM
caches

Writes are first
buffered, then
destaged to the
non-volatile platter

8

MEMORY

DISK
CACHE

DISK
PLATTER

write(A) write(B)

Wednesday, October 9, 13

Ordering Writes in Disks
Modern disk drives
have on-board RAM
caches

Writes are first
buffered, then
destaged to the
non-volatile platter

8

MEMORY

DISK
CACHE

DISK
PLATTER

write(A) write(B)

Wednesday, October 9, 13

Ordering Writes in Disks
Modern disk drives
have on-board RAM
caches

Writes are first
buffered, then
destaged to the
non-volatile platter

8

MEMORY

DISK
CACHE

DISK
PLATTER

write(A) write(B)

Wednesday, October 9, 13

Using Flushes to Order Writes

MEMORY

DISK
CACHE

D JM JC M

DISK
PLATTER

9
Wednesday, October 9, 13

Using Flushes to Order Writes

MEMORY

DISK
CACHE

DJM

JC M

DISK
PLATTER

9
Wednesday, October 9, 13

Using Flushes to Order Writes

MEMORY

DISK
CACHE

DJM

JC M

DISK
PLATTER

FLUSH

9
Wednesday, October 9, 13

Using Flushes to Order Writes

MEMORY

DISK
CACHE

DJM

JC

M

DISK
PLATTER

FLUSH

9
Wednesday, October 9, 13

Using Flushes to Order Writes

MEMORY

DISK
CACHE

DJM JC

M

DISK
PLATTER

FLUSH FLUSH

9
Wednesday, October 9, 13

Default Journaling
is Pessimistic

10
Wednesday, October 9, 13

Default Journaling
is Pessimistic

Assume crash is going to happen

10
Wednesday, October 9, 13

Default Journaling
is Pessimistic

Assume crash is going to happen

Do extra work during normal runtime

10
Wednesday, October 9, 13

Default Journaling
is Pessimistic

Assume crash is going to happen

Do extra work during normal runtime

Maintain consistency using flushes

10
Wednesday, October 9, 13

Default Journaling
is Pessimistic

Assume crash is going to happen

Do extra work during normal runtime

Maintain consistency using flushes

If crash does not happen, flushes are not
actually needed

10
Wednesday, October 9, 13

Flushing Performance Impact

Comparing FileBench Varmail

With flushes
Without flushes

T
hr

ou
gh

pu
t

(O
ps

/s
)

ext4 configuration
11

Wednesday, October 9, 13

Flushing Performance Impact

Comparing FileBench Varmail

0

1250

2500

3750

5000

With flushes
Without flushes

T
hr

ou
gh

pu
t

(O
ps

/s
)

ext4 configuration
11

Wednesday, October 9, 13

Flushing Performance Impact

Comparing FileBench Varmail

0

1250

2500

3750

5000

With flushes
Without flushes

T
hr

ou
gh

pu
t

(O
ps

/s
)

ext4 configuration
11

Wednesday, October 9, 13

Flushing Performance Impact

Comparing FileBench Varmail

0

1250

2500

3750

5000

With flushes
Without flushes

T
hr

ou
gh

pu
t

(O
ps

/s
)

ext4 configuration
11

Wednesday, October 9, 13

Flushing Performance Impact

Comparing FileBench Varmail

0

1250

2500

3750

5000

With flushes
Without flushes

T
hr

ou
gh

pu
t

(O
ps

/s
)

ext4 configuration
11

Wednesday, October 9, 13

Flushing Performance Impact

Comparing FileBench Varmail

0

1250

2500

3750

5000

With flushes
Without flushes

T
hr

ou
gh

pu
t

(O
ps

/s
)

ext4 configuration
11

Wednesday, October 9, 13

Flushing Performance Impact

Comparing FileBench Varmail

0

1250

2500

3750

5000

With flushes
Without flushes

T
hr

ou
gh

pu
t

(O
ps

/s
)

ext4 configuration

~ 5X performance difference based on flushing!

11
Wednesday, October 9, 13

Journaling
Without Flushes

12
Wednesday, October 9, 13

Journaling Without Flushes

13
Wednesday, October 9, 13

Journaling Without Flushes
Many practitioners turn off flushes because of
performance degradation

13
Wednesday, October 9, 13

Journaling Without Flushes
Many practitioners turn off flushes because of
performance degradation

Ex: ext3 by default did not enable flushes for
many years

13
Wednesday, October 9, 13

Journaling Without Flushes
Many practitioners turn off flushes because of
performance degradation

Ex: ext3 by default did not enable flushes for
many years

They observe crashes do not cause
inconsistency for some workloads

13
Wednesday, October 9, 13

Journaling Without Flushes
Many practitioners turn off flushes because of
performance degradation

Ex: ext3 by default did not enable flushes for
many years

They observe crashes do not cause
inconsistency for some workloads

13
Wednesday, October 9, 13

The Ts’o Hypothesis
Kernel developer Ted Ts’o hypothesized on
why inconsistency does not occur:

14

“I suspect the real reason why we get away with it so much
with ext3 is that the journal is usually contiguous on disk,
hence, when you write to the journal, it’s highly unlikely that
commit block will be written and the blocks before the
commit block have not. ... The most important reason,
though, is that the blocks which are dirty don’t get flushed
out to disk right away!”

Wednesday, October 9, 13

The Ts’o Hypothesis
Kernel developer Ted Ts’o hypothesized on
why inconsistency does not occur:

14

“I suspect the real reason why we get away with it so much
with ext3 is that the journal is usually contiguous on disk,
hence, when you write to the journal, it’s highly unlikely that
commit block will be written and the blocks before the
commit block have not. ... The most important reason,
though, is that the blocks which are dirty don’t get flushed
out to disk right away!”

Re-ordering does not happen due to layout
and checkpointing delay

Wednesday, October 9, 13

Probabilistic
Crash Consistency

We set out to investigate the Ts’o hypothesis

- Given a workload, what is the risk of causing
inconsistency upon crash?

- What are the factors which that contribute to
the risk?

15
Wednesday, October 9, 13

Probabilistic
Crash Consistency

We ran different workloads on ext4
without flushes

We collected the traces at the disk level

We ran them on DiskSim simulator

16
Wednesday, October 9, 13

Probabilistic
Crash Consistency

D JM JC M

DJMJC M

Time
MEMORY

DISK

17
Wednesday, October 9, 13

Probabilistic
Crash Consistency

D JM JC M

DJMJC M

Time

Window

MEMORY

DISK

17
Wednesday, October 9, 13

D M
Time

Window

Total time

P-inconsistency = Total time in window(s) / Total time

JMJC

Probabilistic
Crash Consistency

18
Wednesday, October 9, 13

Types of Re-ordering

19

D JM JC MCorrect Order

Wednesday, October 9, 13

Types of Re-ordering

D JMJC M

19

D JMJC M

D JM JC MCorrect Order

Early Commit

Wednesday, October 9, 13

Types of Re-ordering

D JMJC M

19

D JMJC M

D JM JCM

D JM JCM

D JM JCM

D JM JC MCorrect Order

Early Commit

Early Checkpoint

Wednesday, October 9, 13

Types of Re-ordering

D JMJC M

19

D JMJC M

D JM JCM

D JM JCM

D JM JCM

JCi-1

D JM JC M

JCi

Correct Order

Early Commit

Early Checkpoint

Transaction Misorder

Wednesday, October 9, 13

Probabilistic
Crash Consistency

We analyzed different workloads using
this framework

Calculated p-inconsistency and
investigated the factors contributing to
p-inconsistency

20
Wednesday, October 9, 13

Results

0

0.15

0.3

0.45

0.6

Seq write Rand write Varmail MySQL-OLTP

P-
in

co
ns

is
te

nc
y

21

Workloads

Wednesday, October 9, 13

Results

0

0.15

0.3

0.45

0.6

Seq write Rand write Varmail MySQL-OLTP

P-
in

co
ns

is
te

nc
y

21

Workloads

Wednesday, October 9, 13

Results

0

0.15

0.3

0.45

0.6

Seq write Rand write Varmail MySQL-OLTP

P-
in

co
ns

is
te

nc
y

21

Workloads

Wednesday, October 9, 13

Results

0

0.15

0.3

0.45

0.6

Seq write Rand write Varmail MySQL-OLTP

P-
in

co
ns

is
te

nc
y

21

Workloads

Wednesday, October 9, 13

Results

0

0.15

0.3

0.45

0.6

Seq write Rand write Varmail MySQL-OLTP

P-
in

co
ns

is
te

nc
y

21

Workloads

Wednesday, October 9, 13

Results

0

0.15

0.3

0.45

0.6

Seq write Rand write Varmail MySQL-OLTP

P-
in

co
ns

is
te

nc
y

21

Workloads

Wednesday, October 9, 13

Results

0

0.15

0.3

0.45

0.6

Seq write Rand write Varmail MySQL-OLTP

P-
in

co
ns

is
te

nc
y

21

Workloads

Wednesday, October 9, 13

Results

0

0.15

0.3

0.45

0.6

Seq write Rand write Varmail MySQL-OLTP

P-
in

co
ns

is
te

nc
y

Nature of writes affects p-inconsistency

21

Workloads

Wednesday, October 9, 13

Some orderings hold in
practice without flushes

22
Wednesday, October 9, 13

Checkpoint related re-orderings occurred
very rarely in the workloads

- Due to the delay (~5-30 s) between
committing and checkpointing a transaction

Some orderings hold in
practice without flushes

MJC

22
Wednesday, October 9, 13

Some orderings hold in
practice without flushes

If we extend that to all
orderings, we get

consistency without flushes
23

Wednesday, October 9, 13

Optimistic
Crash Consistency

24
Wednesday, October 9, 13

Optimistic commit
protocol that provides

consistency without flushes

Optimistic Crash
Consistency

25
Wednesday, October 9, 13

Why “optimistic”?
Assume that crashes rarely happen

Eliminate flushes from runtime code

When crash happens, recover using
appropriate mechanisms

Trade “freshness” for performance

Some data may be lost on a crash

26
Wednesday, October 9, 13

Freshness

27
Wednesday, October 9, 13

Freshness
Another aspect of crash consistency

27
Wednesday, October 9, 13

Freshness
Another aspect of crash consistency

After a crash, what consistent state does
the system recover to?

- An empty file system is consistent

27
Wednesday, October 9, 13

Freshness
Another aspect of crash consistency

After a crash, what consistent state does
the system recover to?

- An empty file system is consistent

27

State 1 State 2 State 3 State 4X
Wednesday, October 9, 13

Freshness
Another aspect of crash consistency

After a crash, what consistent state does
the system recover to?

- An empty file system is consistent

27

State 1 State 2 State 3 State 4X
Wednesday, October 9, 13

Freshness
Another aspect of crash consistency

After a crash, what consistent state does
the system recover to?

- An empty file system is consistent

27

State 1 State 2 State 3 State 4X
Wednesday, October 9, 13

Freshness
Another aspect of crash consistency

After a crash, what consistent state does
the system recover to?

- An empty file system is consistent

Many applications can tolerate stale but
consistent data [Keeton04, Cipar12]

27

State 1 State 2 State 3 State 4X
Wednesday, October 9, 13

Optimistic
Crash Consistency

28
Wednesday, October 9, 13

Optimistic
Crash Consistency

We design optimistic techniques to
eliminate flushes in the common case

28
Wednesday, October 9, 13

Optimistic
Crash Consistency

We design optimistic techniques to
eliminate flushes in the common case

It changes the ACID model: only eventual
durability is provided

28
Wednesday, October 9, 13

Optimistic
Crash Consistency

We design optimistic techniques to
eliminate flushes in the common case

It changes the ACID model: only eventual
durability is provided

We split the fsync() imperative into two:

- osync() for ordering

- dsync() for durability
28

Wednesday, October 9, 13

nosync, fsync and osync

29
Wednesday, October 9, 13

nosync, fsync and osync
create(f1, A)

create(f2, B)

create(f3, C)

29
Wednesday, October 9, 13

nosync, fsync and osync
create(f1, A)

create(f2, B)

create(f3, C)

X

29
Wednesday, October 9, 13

nosync, fsync and osync
create(f1, A)

create(f2, B)

create(f3, C)

X

29

Possible states
(ɸ, ɸ, ɸ)

(ɸ, ɸ, C)

(ɸ, B, C) (A, B, ɸ)

(A, ɸ, ɸ)

(ɸ, B, ɸ)

(A, B, C)

(A, ɸ, C)

Wednesday, October 9, 13

nosync, fsync and osync
create(f1, A)

create(f2, B)

create(f3, C)

create(f1, A)

create(f2, B)

fsync(f1)

fsync(f2)

create(f3, C)

fsync(f3)
X

29

Possible states
(ɸ, ɸ, ɸ)

(ɸ, ɸ, C)

(ɸ, B, C) (A, B, ɸ)

(A, ɸ, ɸ)

(ɸ, B, ɸ)

(A, B, C)

(A, ɸ, C)

Wednesday, October 9, 13

nosync, fsync and osync
create(f1, A)

create(f2, B)

create(f3, C)

create(f1, A)

create(f2, B)

fsync(f1)

fsync(f2)

create(f3, C)

fsync(f3)
XX

29

Possible states
(ɸ, ɸ, ɸ)

(ɸ, ɸ, C)

(ɸ, B, C) (A, B, ɸ)

(A, ɸ, ɸ)

(ɸ, B, ɸ)

(A, B, C)

(A, ɸ, C)

Wednesday, October 9, 13

nosync, fsync and osync
create(f1, A)

create(f2, B)

create(f3, C)

create(f1, A)

create(f2, B)

fsync(f1)

fsync(f2)

create(f3, C)

fsync(f3)
XX

Possible states
(A, B, ɸ)
(A, B, C)

29

Possible states
(ɸ, ɸ, ɸ)

(ɸ, ɸ, C)

(ɸ, B, C) (A, B, ɸ)

(A, ɸ, ɸ)

(ɸ, B, ɸ)

(A, B, C)

(A, ɸ, C)

Wednesday, October 9, 13

nosync, fsync and osync
create(f1, A)

create(f2, B)

create(f3, C)

create(f1, A)

create(f2, B)

fsync(f1)

fsync(f2)

create(f3, C)

fsync(f3)

create(f1, A)

create(f2, B)

osync(f1)

osync(f2)

create(f3, C)

osync(f3)
XX

Possible states
(A, B, ɸ)
(A, B, C)

29

Possible states
(ɸ, ɸ, ɸ)

(ɸ, ɸ, C)

(ɸ, B, C) (A, B, ɸ)

(A, ɸ, ɸ)

(ɸ, B, ɸ)

(A, B, C)

(A, ɸ, C)

Wednesday, October 9, 13

nosync, fsync and osync
create(f1, A)

create(f2, B)

create(f3, C)

create(f1, A)

create(f2, B)

fsync(f1)

fsync(f2)

create(f3, C)

fsync(f3)

create(f1, A)

create(f2, B)

osync(f1)

osync(f2)

create(f3, C)

osync(f3)
X XX

Possible states
(A, B, ɸ)
(A, B, C)

29

Possible states
(ɸ, ɸ, ɸ)

(ɸ, ɸ, C)

(ɸ, B, C) (A, B, ɸ)

(A, ɸ, ɸ)

(ɸ, B, ɸ)

(A, B, C)

(A, ɸ, C)

Wednesday, October 9, 13

nosync, fsync and osync
create(f1, A)

create(f2, B)

create(f3, C)

create(f1, A)

create(f2, B)

fsync(f1)

fsync(f2)

create(f3, C)

fsync(f3)

create(f1, A)

create(f2, B)

osync(f1)

osync(f2)

create(f3, C)

osync(f3)
X XX

Possible states
(A, B, ɸ)
(A, B, C)

Possible states
(ɸ, ɸ, ɸ)
(A, ɸ, ɸ)
(A, B, ɸ)
(A, B, C) 29

Possible states
(ɸ, ɸ, ɸ)

(ɸ, ɸ, C)

(ɸ, B, C) (A, B, ɸ)

(A, ɸ, ɸ)

(ɸ, B, ɸ)

(A, B, C)

(A, ɸ, C)

Wednesday, October 9, 13

nosync, fsync and osync
create(f1, A)

create(f2, B)

create(f3, C)

create(f1, A)

create(f2, B)

fsync(f1)

fsync(f2)

create(f3, C)

fsync(f3)

create(f1, A)

create(f2, B)

osync(f1)

osync(f2)

create(f3, C)

osync(f3)
X XX

Possible states
(A, B, ɸ)
(A, B, C)

Possible states
(ɸ, ɸ, ɸ)
(A, ɸ, ɸ)
(A, B, ɸ)
(A, B, C)

osync() ensures ordering and eventual durability

29

Possible states
(ɸ, ɸ, ɸ)

(ɸ, ɸ, C)

(ɸ, B, C) (A, B, ɸ)

(A, ɸ, ɸ)

(ɸ, B, ɸ)

(A, B, C)

(A, ɸ, C)

Wednesday, October 9, 13

osync() use cases
File formats like doc embed a number of
files inside them [Harter11]

30
Wednesday, October 9, 13

osync() use cases
File formats like doc embed a number of
files inside them [Harter11]

write(body)

write(header)

fsync(body)

fsync(header)

30
Wednesday, October 9, 13

osync() use cases
File formats like doc embed a number of
files inside them [Harter11]

write(body)

write(header)

fsync(body)

fsync(header)

30
Wednesday, October 9, 13

osync() use cases
File formats like doc embed a number of
files inside them [Harter11]

write(body)

write(header)

fsync(body)

fsync(header)

30
Wednesday, October 9, 13

osync() use cases
File formats like doc embed a number of
files inside them [Harter11]

write(body)

write(header)

fsync(body)

fsync(header)

write(body)

write(header)

osync(body)

dsync(header)

30
Wednesday, October 9, 13

Asynchronous
 Durability Notifications

31
Wednesday, October 9, 13

Asynchronous
 Durability Notifications

Conventional writes
return from the disk cache

31
Wednesday, October 9, 13

Asynchronous
 Durability Notifications

Conventional writes
return from the disk cache

MEMORY

DISK
CACHE

DISK
PLATTER

write()

31
Wednesday, October 9, 13

Asynchronous
 Durability Notifications

Conventional writes
return from the disk cache

Flush command used to
ensure durability

MEMORY

DISK
CACHE

DISK
PLATTER

write()

31
Wednesday, October 9, 13

Asynchronous
 Durability Notifications

Conventional writes
return from the disk cache

Flush command used to
ensure durability

Asynchronous Durability
notifications informs upper
layer when blocks are
durable

MEMORY

DISK
CACHE

DISK
PLATTER

write()

31
Wednesday, October 9, 13

Optimistic Techniques

32
Wednesday, October 9, 13

Optimistic Techniques
D JMJC M

32

D JMJC M

Early Commit

Wednesday, October 9, 13

Optimistic Techniques
D JMJC M

32

D JMJC M

Early Commit

Checksums

Wednesday, October 9, 13

Optimistic Techniques
D JMJC M

32

D JMJC M

D JM JCM

D JM JCM

D JM JCM

Early Commit

Early Checkpoint

Checksums

Wednesday, October 9, 13

Optimistic Techniques
D JMJC M

32

D JMJC M

D JM JCM

D JM JCM

D JM JCM

Early Commit

Early Checkpoint

Checksums

Delayed Writes

Wednesday, October 9, 13

Optimistic Techniques
D JMJC M

32

D JMJC M

D JM JCM

D JM JCM

D JM JCM

JCi-1JCi

Early Commit

Early Checkpoint

Transaction Misorder

Checksums

Delayed Writes

Wednesday, October 9, 13

Optimistic Techniques
D JMJC M

32

D JMJC M

D JM JCM

D JM JCM

D JM JCM

JCi-1JCi

Early Commit

Early Checkpoint

Transaction Misorder

Checksums

Delayed Writes

In-order Journal
Replay & Recovery

Wednesday, October 9, 13

Allowing re-ordering

D JM JCMEMORY

DISK

D JMJB

33
Wednesday, October 9, 13

Allowing re-ordering
We use two checksums to detect
mis-ordering upon crash

D JM JCMEMORY

DISK

D JMJB

33
Wednesday, October 9, 13

Allowing re-ordering
We use two checksums to detect
mis-ordering upon crash

- Metadata transactional checksum
[Prabhakaran05]

D JM JCMEMORY

DISK

D JMJB

33
Wednesday, October 9, 13

Allowing re-ordering
We use two checksums to detect
mis-ordering upon crash

- Metadata transactional checksum
[Prabhakaran05]

- Data transactional checksum

D JM JCMEMORY

DISK

D JMJB

33
Wednesday, October 9, 13

Avoiding re-ordering

We use durability notifications to know
when writes leave the disk cache

We avoid having writes we don’t want
re-ordered in the disk cache at the
same time

34
Wednesday, October 9, 13

Avoiding re-ordering

MEMORY

DISK
CACHE

D JM JC M

DISK
PLATTER

JB

Example: checkpoint writes

35
Wednesday, October 9, 13

Avoiding re-ordering

MEMORY

DISK
CACHE

D JM JC

M

DISK
PLATTER

JB

Example: checkpoint writes

35
Wednesday, October 9, 13

Avoiding re-ordering

MEMORY

DISK
CACHE

D JM JC

M

DISK
PLATTER

JB

Example: checkpoint writes

35
Wednesday, October 9, 13

Avoiding re-ordering

MEMORY

DISK
CACHE

D JM JC

M

DISK
PLATTER

JB

Example: checkpoint writes

35
Wednesday, October 9, 13

Avoiding re-ordering

36
Wednesday, October 9, 13

Avoiding re-ordering
We delay checkpoint writes:

- Write checkpoint blocks only after the entire
transaction is durable

- Checkpoint transactions in order

36
Wednesday, October 9, 13

Avoiding re-ordering
We delay checkpoint writes:

- Write checkpoint blocks only after the entire
transaction is durable

- Checkpoint transactions in order

We delay freeing journal blocks:

- Free journal blocks only after entire transaction
has been durably checkpointed

- Free journal transaction blocks in order

36
Wednesday, October 9, 13

In-order recovery

37
Wednesday, October 9, 13

In-order recovery
After a crash, we recover journal transactions
in order

37
Wednesday, October 9, 13

In-order recovery
After a crash, we recover journal transactions
in order

Eligible transactions are replayed

37
Wednesday, October 9, 13

In-order recovery
After a crash, we recover journal transactions
in order

Eligible transactions are replayed

Recovery stops at first corrupt transaction

37
Wednesday, October 9, 13

In-order recovery
After a crash, we recover journal transactions
in order

Eligible transactions are replayed

Recovery stops at first corrupt transaction

In order to be replayed, transaction has to
match all checksums

37
Wednesday, October 9, 13

In-order recovery
After a crash, we recover journal transactions
in order

Eligible transactions are replayed

Recovery stops at first corrupt transaction

In order to be replayed, transaction has to
match all checksums

D1 JM1 JC1X JM1JB1 D2 JM2 JC2JB2

On-disk journal

37
Wednesday, October 9, 13

In-order recovery
After a crash, we recover journal transactions
in order

Eligible transactions are replayed

Recovery stops at first corrupt transaction

In order to be replayed, transaction has to
match all checksums

D1 JM1 JC1X JM1JB1 D2 JM2 JC2JB2

On-disk journal

Transaction 1 37
Wednesday, October 9, 13

In-order recovery
After a crash, we recover journal transactions
in order

Eligible transactions are replayed

Recovery stops at first corrupt transaction

In order to be replayed, transaction has to
match all checksums

D1 JM1 JC1X JM1JB1 D2 JM2 JC2JB2

On-disk journal

Transaction 1 Transaction 2 37
Wednesday, October 9, 13

Handling Data Overwrites

38

D JM JC M

In ordered journaling mode, even if tx fails,
data block cannot be rolled back

Wednesday, October 9, 13

Handling Data Overwrites

38

D JM JC M

In ordered journaling mode, even if tx fails,
data block cannot be rolled back

Wednesday, October 9, 13

Handling Data Overwrites

38

D JM JC

In ordered journaling mode, even if tx fails,
data block cannot be rolled back

Wednesday, October 9, 13

Handling Data Overwrites

38

D JM JC

In ordered journaling mode, even if tx fails,
data block cannot be rolled back

Wednesday, October 9, 13

Handling Data Overwrites

38

D JM JC

In ordered journaling mode, even if tx fails,
data block cannot be rolled back

Wednesday, October 9, 13

Handling Data Overwrites

38

D JM JC

This is not a problem for new data blocks

In ordered journaling mode, even if tx fails,
data block cannot be rolled back

Wednesday, October 9, 13

Handling Data Overwrites

For overwritten data blocks, old metadata
still point to them

38

D JM JC

This is not a problem for new data blocks

In ordered journaling mode, even if tx fails,
data block cannot be rolled back

Wednesday, October 9, 13

Handling Data Overwrites

For overwritten data blocks, old metadata
still point to them

38

D JM JC

This is not a problem for new data blocks

In ordered journaling mode, even if tx fails,
data block cannot be rolled back

We handle this by journaling only
overwritten data blocks

Wednesday, October 9, 13

Handling Data Overwrites

For overwritten data blocks, old metadata
still point to them

38

JM JC M

This is not a problem for new data blocks

In ordered journaling mode, even if tx fails,
data block cannot be rolled back

We handle this by journaling only
overwritten data blocks

JD

Wednesday, October 9, 13

Using checksums, delayed
writes and in-order

recovery, the optimistic
protocol ensures

consistency without flushing

39
Wednesday, October 9, 13

40

Application

Buffer Cache

Disk Cache

Disk Platter

Application

Buffer Cache

Disk Cache

Disk Platter

St
or

ag
e

St
ac

k
W W W F W W W F

Time (ms)

A

B

C

D

D JM JCD

D JMD JC

DJM D JC

WAITING WAITING

D JM JCD

D JMD JC

D JMD JC

ext4 with barriers

OptFS

St
or

ag
e

St
ac

k

W W W O

Time (ms)

A

B

C

D

D JMD

D JMD

DJM DJC D JMD JCD JMD

WAIT

JC

JC

61.8 ms

3 ms

53.3 ms 8.5 ms

JC

0.1
 ms

2.9
 ms

W W W O

D JMD

D JMD

JC

JC

WAIT W W W O

D JMD

D JMD

JC

JC

WAIT

Wednesday, October 9, 13

40

Application

Buffer Cache

Disk Cache

Disk Platter

Application

Buffer Cache

Disk Cache

Disk Platter

St
or

ag
e

St
ac

k
W W W F W W W F

Time (ms)

A

B

C

D

D JM JCD

D JMD JC

DJM D JC

WAITING WAITING

D JM JCD

D JMD JC

D JMD JC

ext4 with barriers

OptFS

St
or

ag
e

St
ac

k

W W W O

Time (ms)

A

B

C

D

D JMD

D JMD

DJM DJC D JMD JCD JMD

WAIT

JC

JC

61.8 ms

3 ms

53.3 ms 8.5 ms

JC

0.1
 ms

2.9
 ms

W W W O

D JMD

D JMD

JC

JC

WAIT W W W O

D JMD

D JMD

JC

JC

WAIT

Wednesday, October 9, 13

40

Application

Buffer Cache

Disk Cache

Disk Platter

Application

Buffer Cache

Disk Cache

Disk Platter

St
or

ag
e

St
ac

k
W W W F W W W F

Time (ms)

A

B

C

D

D JM JCD

D JMD JC

DJM D JC

WAITING WAITING

D JM JCD

D JMD JC

D JMD JC

ext4 with barriers

OptFS

St
or

ag
e

St
ac

k

W W W O

Time (ms)

A

B

C

D

D JMD

D JMD

DJM DJC D JMD JCD JMD

WAIT

JC

JC

61.8 ms

3 ms

53.3 ms 8.5 ms

JC

0.1
 ms

2.9
 ms

W W W O

D JMD

D JMD

JC

JC

WAIT W W W O

D JMD

D JMD

JC

JC

WAIT

Wednesday, October 9, 13

40

Application

Buffer Cache

Disk Cache

Disk Platter

Application

Buffer Cache

Disk Cache

Disk Platter

St
or

ag
e

St
ac

k
W W W F W W W F

Time (ms)

A

B

C

D

D JM JCD

D JMD JC

DJM D JC

WAITING WAITING

D JM JCD

D JMD JC

D JMD JC

ext4 with barriers

OptFS

St
or

ag
e

St
ac

k

W W W O

Time (ms)

A

B

C

D

D JMD

D JMD

DJM DJC D JMD JCD JMD

WAIT

JC

JC

61.8 ms

3 ms

53.3 ms 8.5 ms

JC

0.1
 ms

2.9
 ms

W W W O

D JMD

D JMD

JC

JC

WAIT W W W O

D JMD

D JMD

JC

JC

WAIT

Wednesday, October 9, 13

40

Application

Buffer Cache

Disk Cache

Disk Platter

Application

Buffer Cache

Disk Cache

Disk Platter

St
or

ag
e

St
ac

k
W W W F W W W F

Time (ms)

A

B

C

D

D JM JCD

D JMD JC

DJM D JC

WAITING WAITING

D JM JCD

D JMD JC

D JMD JC

ext4 with barriers

OptFS

St
or

ag
e

St
ac

k

W W W O

Time (ms)

A

B

C

D

D JMD

D JMD

DJM DJC D JMD JCD JMD

WAIT

JC

JC

61.8 ms

3 ms

53.3 ms 8.5 ms

JC

0.1
 ms

2.9
 ms

W W W O

D JMD

D JMD

JC

JC

WAIT W W W O

D JMD

D JMD

JC

JC

WAIT

Wednesday, October 9, 13

40

Application

Buffer Cache

Disk Cache

Disk Platter

Application

Buffer Cache

Disk Cache

Disk Platter

St
or

ag
e

St
ac

k
W W W F W W W F

Time (ms)

A

B

C

D

D JM JCD

D JMD JC

DJM D JC

WAITING WAITING

D JM JCD

D JMD JC

D JMD JC

ext4 with barriers

OptFS

St
or

ag
e

St
ac

k

W W W O

Time (ms)

A

B

C

D

D JMD

D JMD

DJM DJC D JMD JCD JMD

WAIT

JC

JC

61.8 ms

3 ms

53.3 ms 8.5 ms

JC

0.1
 ms

2.9
 ms

W W W O

D JMD

D JMD

JC

JC

WAIT W W W O

D JMD

D JMD

JC

JC

WAIT

Wednesday, October 9, 13

40

Application

Buffer Cache

Disk Cache

Disk Platter

Application

Buffer Cache

Disk Cache

Disk Platter

St
or

ag
e

St
ac

k
W W W F W W W F

Time (ms)

A

B

C

D

D JM JCD

D JMD JC

DJM D JC

WAITING WAITING

D JM JCD

D JMD JC

D JMD JC

ext4 with barriers

OptFS

St
or

ag
e

St
ac

k

W W W O

Time (ms)

A

B

C

D

D JMD

D JMD

DJM DJC D JMD JCD JMD

WAIT

JC

JC

61.8 ms

3 ms

53.3 ms 8.5 ms

JC

0.1
 ms

2.9
 ms

W W W O

D JMD

D JMD

JC

JC

WAIT W W W O

D JMD

D JMD

JC

JC

WAIT

Wednesday, October 9, 13

40

Application

Buffer Cache

Disk Cache

Disk Platter

Application

Buffer Cache

Disk Cache

Disk Platter

St
or

ag
e

St
ac

k
W W W F W W W F

Time (ms)

A

B

C

D

D JM JCD

D JMD JC

DJM D JC

WAITING WAITING

D JM JCD

D JMD JC

D JMD JC

ext4 with barriers

OptFS

St
or

ag
e

St
ac

k

W W W O

Time (ms)

A

B

C

D

D JMD

D JMD

DJM DJC D JMD JCD JMD

WAIT

JC

JC

61.8 ms

3 ms

53.3 ms 8.5 ms

JC

0.1
 ms

2.9
 ms

W W W O

D JMD

D JMD

JC

JC

WAIT W W W O

D JMD

D JMD

JC

JC

WAIT

Wednesday, October 9, 13

40

Application

Buffer Cache

Disk Cache

Disk Platter

Application

Buffer Cache

Disk Cache

Disk Platter

St
or

ag
e

St
ac

k
W W W F W W W F

Time (ms)

A

B

C

D

D JM JCD

D JMD JC

DJM D JC

WAITING WAITING

D JM JCD

D JMD JC

D JMD JC

ext4 with barriers

OptFS

St
or

ag
e

St
ac

k

W W W O

Time (ms)

A

B

C

D

D JMD

D JMD

DJM DJC D JMD JCD JMD

WAIT

JC

JC

61.8 ms

3 ms

53.3 ms 8.5 ms

JC

0.1
 ms

2.9
 ms

W W W O

D JMD

D JMD

JC

JC

WAIT W W W O

D JMD

D JMD

JC

JC

WAIT

Wednesday, October 9, 13

40

Application

Buffer Cache

Disk Cache

Disk Platter

Application

Buffer Cache

Disk Cache

Disk Platter

St
or

ag
e

St
ac

k
W W W F W W W F

Time (ms)

A

B

C

D

D JM JCD

D JMD JC

DJM D JC

WAITING WAITING

D JM JCD

D JMD JC

D JMD JC

ext4 with barriers

OptFS

St
or

ag
e

St
ac

k

W W W O

Time (ms)

A

B

C

D

D JMD

D JMD

DJM DJC D JMD JCD JMD

WAIT

JC

JC

61.8 ms

3 ms

53.3 ms 8.5 ms

JC

0.1
 ms

2.9
 ms

W W W O

D JMD

D JMD

JC

JC

WAIT W W W O

D JMD

D JMD

JC

JC

WAIT

Wednesday, October 9, 13

Implementation

41
Wednesday, October 9, 13

Implementation
We implemented the Optimistic File
System (OptFS)

41
Wednesday, October 9, 13

Implementation
We implemented the Optimistic File
System (OptFS)

OptFS is based on ext4 code

41
Wednesday, October 9, 13

Implementation
We implemented the Optimistic File
System (OptFS)

OptFS is based on ext4 code

Linux kernel: 3.2

41
Wednesday, October 9, 13

Implementation
We implemented the Optimistic File
System (OptFS)

OptFS is based on ext4 code

Linux kernel: 3.2

Lines added/modified: 2400

41
Wednesday, October 9, 13

Implementation
We implemented the Optimistic File
System (OptFS)

OptFS is based on ext4 code

Linux kernel: 3.2

Lines added/modified: 2400

Source code available:

41
Wednesday, October 9, 13

Implementation
We implemented the Optimistic File
System (OptFS)

OptFS is based on ext4 code

Linux kernel: 3.2

Lines added/modified: 2400

Source code available:

- http://research.cs.wisc.edu/adsl/Software/optfs/

41
Wednesday, October 9, 13

http://research.cs.wisc.edu/adsl/Software/optfs/
http://research.cs.wisc.edu/adsl/Software/optfs/

Implementation
We implemented the Optimistic File
System (OptFS)

OptFS is based on ext4 code

Linux kernel: 3.2

Lines added/modified: 2400

Source code available:

- http://research.cs.wisc.edu/adsl/Software/optfs/

- https://github.com/vijay03/optfs
41

Wednesday, October 9, 13

http://research.cs.wisc.edu/adsl/Software/optfs/
http://research.cs.wisc.edu/adsl/Software/optfs/
https://github.com/vijay03/optfs
https://github.com/vijay03/optfs

Evaluation

42
Wednesday, October 9, 13

Evaluation
Is OptFS reliable to random crashes?

- In 400 different random crash scenarios,
OptFS proved to be reliable

42
Wednesday, October 9, 13

Evaluation
Is OptFS reliable to random crashes?

- In 400 different random crash scenarios,
OptFS proved to be reliable

What is the performance of OptFS?

- Evaluate on different workloads

- Overwrites in OptFS cause 2 writes: one
to the journal and one to the file system

42
Wednesday, October 9, 13

Reliability

43
Wednesday, October 9, 13

Reliability

Built a crash-testing framework

43
Wednesday, October 9, 13

Reliability

Built a crash-testing framework

Workloads:

- Append to a file

- Overwrites to an existing file

43
Wednesday, October 9, 13

Reliability

Built a crash-testing framework

Workloads:

- Append to a file

- Overwrites to an existing file

Crash after re-ordering writes

43
Wednesday, October 9, 13

Reliability

Built a crash-testing framework

Workloads:

- Append to a file

- Overwrites to an existing file

Crash after re-ordering writes

Recover from crashed image

Test for consistency
43

Wednesday, October 9, 13

Reliability

Built a crash-testing framework

Workloads:

- Append to a file

- Overwrites to an existing file

Crash after re-ordering writes

Recover from crashed image

Test for consistency

In 400 different crash scenarios, OptFS proved to be
reliable

43
Wednesday, October 9, 13

Performance

0

5

10

15

20

Seq over-write Random writes Varmail MySQL Createfiles

ext4 (flush) ext4 (no flush) OptFS

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

Workloads
44

Wednesday, October 9, 13

Performance

0

5

10

15

20

Seq over-write Random writes Varmail MySQL Createfiles

ext4 (flush) ext4 (no flush) OptFS

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

Workloads
44

Wednesday, October 9, 13

Performance

0

5

10

15

20

Seq over-write Random writes Varmail MySQL Createfiles

ext4 (flush) ext4 (no flush) OptFS

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

Workloads
44

Wednesday, October 9, 13

Performance

0

5

10

15

20

Seq over-write Random writes Varmail MySQL Createfiles

ext4 (flush) ext4 (no flush) OptFS

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

Workloads
44

Wednesday, October 9, 13

Performance

0

5

10

15

20

Seq over-write Random writes Varmail MySQL Createfiles

ext4 (flush) ext4 (no flush) OptFS

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

Workloads
44

Due to
OptFS

journaling
overwrites

Wednesday, October 9, 13

Performance

0

5

10

15

20

Seq over-write Random writes Varmail MySQL Createfiles

ext4 (flush) ext4 (no flush) OptFS

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

Workloads
44

Random
writes

becomes
sequential

Wednesday, October 9, 13

Performance

0

5

10

15

20

Seq over-write Random writes Varmail MySQL Createfiles

ext4 (flush) ext4 (no flush) OptFS

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

Workloads
44

OptFS
handles data

writeout
better

Wednesday, October 9, 13

Performance

0

5

10

15

20

Seq over-write Random writes Varmail MySQL Createfiles

ext4 (flush) ext4 (no flush) OptFS

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

Workloads
44

Due to
OptFS

journaling
overwrites

Wednesday, October 9, 13

Performance

0

5

10

15

20

Seq over-write Random writes Varmail MySQL Createfiles

ext4 (flush) ext4 (no flush) OptFS

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

Workloads
44

OptFS
handles data

writeout
better

Wednesday, October 9, 13

Performance

0

5

10

15

20

Seq over-write Random writes Varmail MySQL Createfiles

ext4 (flush) ext4 (no flush) OptFS

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

Workloads
44

OptFS
handles data

writeout
better

OptFS improves performance significantly (4-10x)
for certain workloads

Wednesday, October 9, 13

Application level
consistency

45
Wednesday, October 9, 13

Application level
consistency

Can meaningful crash consistency be
built on top of OptFS?

45
Wednesday, October 9, 13

Application level
consistency

Can meaningful crash consistency be
built on top of OptFS?

Replaced fysnc() with osync()

45
Wednesday, October 9, 13

Application level
consistency

Can meaningful crash consistency be
built on top of OptFS?

Replaced fysnc() with osync()

Studied behavior on recovery from
random crashes:

- Gedit

- SQLite
45

Wednesday, October 9, 13

Consistency in SQLite

46
Wednesday, October 9, 13

Consistency in SQLite
File-system consistency SQLite consistency

no sync None

osync() ACI (with eventual
durability)

fsync() ACID

46
Wednesday, October 9, 13

Consistency in SQLite
File-system consistency SQLite consistency

no sync None

osync() ACI (with eventual
durability)

fsync() ACID

46
Wednesday, October 9, 13

Consistency in SQLite
File-system consistency SQLite consistency

no sync None

osync() ACI (with eventual
durability)

fsync() ACID

46
Wednesday, October 9, 13

Consistency in SQLite
File-system consistency SQLite consistency

no sync None

osync() ACI (with eventual
durability)

fsync() ACID

46
Wednesday, October 9, 13

Consistency in SQLite
File-system consistency SQLite consistency

no sync None

osync() ACI (with eventual
durability)

fsync() ACID

Crash SQLite in the middle of a transaction

46
Wednesday, October 9, 13

Consistency in SQLite
File-system consistency SQLite consistency

no sync None

osync() ACI (with eventual
durability)

fsync() ACID

Experimentally SQLite is consistent,
but potentially stale

Crash SQLite in the middle of a transaction

46
Wednesday, October 9, 13

Case studies: Application
level consistency

Ext4 w/o flush Ext4 w/ flush OptFS

Inconsistent 73 0 0

Old state 8 50 76

New state 19 50 24

Time per op (ms) 23.28 152 15.3

Total crashpoints: 100
Application: SQLite

47
Wednesday, October 9, 13

Case studies: Application
level consistency

Ext4 w/o flush Ext4 w/ flush OptFS

Inconsistent 73 0 0

Old state 8 50 76

New state 19 50 24

Time per op (ms) 23.28 152 15.3

Total crashpoints: 100
Application: SQLite

47
Wednesday, October 9, 13

Case studies: Application
level consistency

Ext4 w/o flush Ext4 w/ flush OptFS

Inconsistent 73 0 0

Old state 8 50 76

New state 19 50 24

Time per op (ms) 23.28 152 15.3

Total crashpoints: 100
Application: SQLite

47
Wednesday, October 9, 13

Case studies: Application
level consistency

Ext4 w/o flush Ext4 w/ flush OptFS

Inconsistent 73 0 0

Old state 8 50 76

New state 19 50 24

Time per op (ms) 23.28 152 15.3

Total crashpoints: 100
Application: SQLite

47
Wednesday, October 9, 13

Case studies: Application
level consistency

Ext4 w/o flush Ext4 w/ flush OptFS

Inconsistent 73 0 0

Old state 8 50 76

New state 19 50 24

Time per op (ms) 23.28 152 15.3

Total crashpoints: 100
Application: SQLite

47
Wednesday, October 9, 13

Case studies: Application
level consistency

Ext4 w/o flush Ext4 w/ flush OptFS

Inconsistent 73 0 0

Old state 8 50 76

New state 19 50 24

Time per op (ms) 23.28 152 15.3

Total crashpoints: 100
Application: SQLite

47
Wednesday, October 9, 13

Case studies: Application
level consistency

Ext4 w/o flush Ext4 w/ flush OptFS

Inconsistent 73 0 0

Old state 8 50 76

New state 19 50 24

Time per op (ms) 23.28 152 15.3

Total crashpoints: 100
Application: SQLite

47
Wednesday, October 9, 13

Case studies: Application
level consistency

Ext4 w/o flush Ext4 w/ flush OptFS

Inconsistent 73 0 0

Old state 8 50 76

New state 19 50 24

Time per op (ms) 23.28 152 15.3

Total crashpoints: 100
Application: SQLite

SQLite is able to provide ACI semantics with osync(),
at 10x performance

47
Wednesday, October 9, 13

Conclusion
OptFS provides consistency without flushes

Asynchronous Durability Notifications allow
the disk to perform optimally

Eventual Durability trades freshness for
increased performance

osync() provides a cheap primitive to order
application writes

48
Wednesday, October 9, 13

Project Ideas

1. Delayed Durability
2. OptFS on Flash
3. Optimistic btrfs
4. p-inconsistency for RAID, Flash
5. Rewrite applications with osync()/dsync()
6. Forced Unit Access (FUA) study
7. Consistency testing framework

49
Wednesday, October 9, 13

Project Ideas

If you are interested, come talk to me

vijayc@cs.wisc.edu

7366 CS

50
Wednesday, October 9, 13

mailto:vijayc@cs.wisc.edu
mailto:vijayc@cs.wisc.edu

Thank you

Questions?

51
Wednesday, October 9, 13

Backup Slides

52
Wednesday, October 9, 13

Resource Consumption

53

FS CPU Memory (MB)

ext4 (flush) 3.39 487

ext4 (no flush) 14.86 516

OptFS 25.32 749

Wednesday, October 9, 13

Why not just fsync()
in the background?

Does not solve the problem for the whole
system: flushes will still be caused

Any application using foreground fsync() will
be affected

Many mobile applications have auto sync at
the same time, causing problems
[Agrawal12]

54
Wednesday, October 9, 13

References
[Cipar12] Cipar, James, Greg Ganger, Kimberly Keeton, Charles B. Morrey III,
Craig AN Soules, and Alistair Veitch. "LazyBase: trading freshness for performance
in a scalable database." In Proceedings of the 7th ACM european conference on
Computer Systems, pp. 169-182. ACM, 2012.

[Chidambaram12] Chidambaram, Vijay, Tushar Sharma, Andrea C. Arpaci-Dusseau,
and Remzi H. Arpaci-Dusseau. "Consistency without ordering." In Proceedings of
the 10th USENIX Symposium on File and Storage Technologies (FAST’12). 2012.

[Chidambaram13*] Chidambaram, Vijay, Thanumalayan Pillai, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau. “Optimistic Crash Consistency.”
Submitted to SOSP 2013

[Ganger94] Ganger, Gregory R., and Yale N. Patt. "Metadata update performance
in file systems." In Proceedings of the 1st USENIX conference on Operating
Systems Design and Implementation, p. 5. USENIX Association, 1994.

55
Wednesday, October 9, 13

References

56

Wednesday, October 9, 13

References
[Ghemawat03] Ghemawat, Sanjay, Howard Gobioff, and Shun-Tak Leung. "The
Google file system." In ACM SIGOPS Operating Systems Review, vol. 37, no. 5, pp.
29-43. ACM, 2003.

[Hagmann87] Hagmann, Robert. Reimplementing the Cedar file system using
logging and group commit. Vol. 21, no. 5. ACM, 1987.

[Hitz94] Hitz, Dave, James Lau, and Michael Malcolm. "File system design for an
NFS file server appliance." In Proceedings of the USENIX Winter 1994 Technical
Conference, pp. 235-246. 1994.

[Keeton04] Keeton, Kimberley, Cipriano Santos, Dirk Beyer, Jeffrey Chase, and
John Wilkes. "Designing for disasters." In Proceedings of the 3rd USENIX
Conference on File and Storage Technologies, pp. 59-62. 2004

56

Wednesday, October 9, 13

References

57

Wednesday, October 9, 13

References

[Lamport98] Lamport, Leslie. "The part-time parliament." ACM Transactions on
Computer Systems (TOCS) 16, no. 2 (1998): 133-169.

[Lamport01] Lamport, Leslie. "Paxos made simple." ACM SIGACT News 32, no. 4
(2001): 18-25

[McKusick84] McKusick, Marshall K., William N. Joy, Samuel J. Leffler, and Robert
S. Fabry. "A fast file system for UNIX." ACM Transactions on Computer Systems
(TOCS) 2, no. 3 (1984): 181-197.

[Ongaro2013] Ongaro, Diego, and John Ousterhout. "In Search of an
Understandable Consensus Algorithm." 2013.

57

Wednesday, October 9, 13

References

58

Wednesday, October 9, 13

References
[Ousterhout10] Ousterhout, John, Parag Agrawal, David Erickson, Christos
Kozyrakis, Jacob Leverich, David Mazières, Subhasish Mitra et al. "The case for
RAMClouds: scalable high-performance storage entirely in DRAM." ACM SIGOPS
Operating Systems Review 43, no. 4 (2010): 92-105.

[Prabhakaran05] Prabhakaran, Vijayan, Lakshmi N. Bairavasundaram, Nitin Agrawal,
Haryadi S. Gunawi, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau.
IRON file systems. Vol. 39, no. 5. ACM, 2005

[Rosenblum92] Rosenblum, Mendel, and John K. Ousterhout. "The design and
implementation of a log-structured file system." ACM Transactions on Computer
Systems (TOCS) 10, no. 1 (1992): 26-52.

[Shvachko10] Shvachko, Konstantin, Hairong Kuang, Sanjay Radia, and Robert
Chansler. "The hadoop distributed file system." In Mass Storage Systems and
Technologies (MSST), 2010 IEEE 26th Symposium on, pp. 1-10. IEEE, 2010.

58

Wednesday, October 9, 13

