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The Crash Consistency 
Problem

A single file-system operation updates 
multiple on-disk data structures

The system may crash in the middle of 
updating these structures

This leaves the file-system partially 
(incorrectly) updated
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Current Solutions to 
Crash Consistency
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Current Solutions to 
Crash Consistency

File-system check [McKusick84]

Journaling [Hagmann87]

Log structured file system [Rosenblum92]

Copy-on-write file system [Hitz94]

Soft Updates [Ganger94]
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Journaling
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Journaling

Before updating the file system, write a note 
describing the update first
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Journaling: an example
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Ordered Writes
Journaling is built upon writing to disk in the 
correct order:

- Journal Writes

- Journal Commit

- Journal Checkpointing

Ex: if checkpointing happens before commit 
and transaction fails, file system is corrupted
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Ordering Writes in Disks
Modern disk drives 
have on-board RAM 
caches

Writes are first 
buffered, then 
destaged to the 
non-volatile platter
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Using Flushes to Order Writes

MEMORY

DISK 
CACHE

D JM JC M

DISK 
PLATTER

9
Wednesday, October 9, 13



Using Flushes to Order Writes

MEMORY

DISK 
CACHE

DJM

JC M

DISK 
PLATTER

9
Wednesday, October 9, 13



Using Flushes to Order Writes

MEMORY

DISK 
CACHE

DJM

JC M

DISK 
PLATTER

FLUSH

9
Wednesday, October 9, 13



Using Flushes to Order Writes

MEMORY

DISK 
CACHE

DJM

JC

M

DISK 
PLATTER

FLUSH

9
Wednesday, October 9, 13



Using Flushes to Order Writes

MEMORY

DISK 
CACHE

DJM JC

M

DISK 
PLATTER

FLUSH FLUSH

9
Wednesday, October 9, 13



Default Journaling
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Default Journaling
is Pessimistic

Assume crash is going to happen

Do extra work during normal runtime

Maintain consistency using flushes

If crash does not happen, flushes are not 
actually needed 
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Flushing Performance Impact

Comparing FileBench Varmail 

With flushes
Without flushes

T
hr

ou
gh

pu
t 

(O
ps

/s
)

ext4 configuration
11

Wednesday, October 9, 13



Flushing Performance Impact

Comparing FileBench Varmail 

0

1250

2500

3750

5000

With flushes
Without flushes

T
hr

ou
gh

pu
t 

(O
ps

/s
)

ext4 configuration
11

Wednesday, October 9, 13



Flushing Performance Impact

Comparing FileBench Varmail 

0

1250

2500

3750

5000

With flushes
Without flushes

T
hr

ou
gh

pu
t 

(O
ps

/s
)

ext4 configuration
11

Wednesday, October 9, 13



Flushing Performance Impact

Comparing FileBench Varmail 

0

1250

2500

3750

5000

With flushes
Without flushes

T
hr

ou
gh

pu
t 

(O
ps

/s
)

ext4 configuration
11

Wednesday, October 9, 13



Flushing Performance Impact

Comparing FileBench Varmail 

0

1250

2500

3750

5000

With flushes
Without flushes

T
hr

ou
gh

pu
t 

(O
ps

/s
)

ext4 configuration
11

Wednesday, October 9, 13



Flushing Performance Impact

Comparing FileBench Varmail 

0

1250

2500

3750

5000

With flushes
Without flushes

T
hr

ou
gh

pu
t 

(O
ps

/s
)

ext4 configuration
11

Wednesday, October 9, 13



Flushing Performance Impact

Comparing FileBench Varmail 

0

1250

2500

3750

5000

With flushes
Without flushes

T
hr

ou
gh

pu
t 

(O
ps

/s
)

ext4 configuration

~ 5X performance difference based on flushing!

11
Wednesday, October 9, 13



Journaling 
Without Flushes
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The Ts’o Hypothesis
Kernel developer Ted Ts’o hypothesized on 
why inconsistency does not occur:

14

“I suspect the real reason why we get away with it so much 
with ext3 is that the journal is usually contiguous on disk, 
hence, when you write to the journal, it’s highly unlikely that 
commit block will be written and the blocks before the 
commit block have not. ... The most important reason, 
though, is that the blocks which are dirty don’t get flushed 
out to disk right away!”
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with ext3 is that the journal is usually contiguous on disk, 
hence, when you write to the journal, it’s highly unlikely that 
commit block will be written and the blocks before the 
commit block have not. ... The most important reason, 
though, is that the blocks which are dirty don’t get flushed 
out to disk right away!”

Re-ordering does not happen due to layout 
and checkpointing delay
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Probabilistic
Crash Consistency

We set out to investigate the Ts’o hypothesis

- Given a workload, what is the risk of causing 
inconsistency upon crash?

- What are the factors which that contribute to 
the risk?
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Probabilistic 
Crash Consistency

We ran different workloads on ext4 
without flushes

We collected the traces at the disk level

We ran them on DiskSim simulator
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Types of Re-ordering
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Probabilistic 
Crash Consistency

We analyzed different workloads using 
this framework

Calculated p-inconsistency and 
investigated the factors contributing to 
p-inconsistency
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Some orderings hold in 
practice without flushes
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Checkpoint related re-orderings occurred 
very rarely in the workloads

- Due to the delay (~5-30 s) between 
committing and checkpointing a transaction 

Some orderings hold in 
practice without flushes

MJC

22
Wednesday, October 9, 13



Some orderings hold in 
practice without flushes

If we extend that to all 
orderings, we get 

consistency without flushes
23
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Optimistic 
Crash Consistency
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Optimistic commit 
protocol that provides 

consistency without flushes

Optimistic Crash 
Consistency
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Why “optimistic”?
Assume that crashes rarely happen

Eliminate flushes from runtime code

When crash happens, recover using 
appropriate mechanisms

Trade “freshness” for performance

Some data may be lost on a crash

26
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Freshness
Another aspect of crash consistency 

After a crash, what consistent state does 
the system recover to?

- An empty file system is consistent

Many applications can tolerate stale but 
consistent data [Keeton04, Cipar12]
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Optimistic 
Crash Consistency

We design optimistic techniques to 
eliminate flushes in the common case

It changes the ACID model: only eventual 
durability is provided

We split the fsync() imperative into two: 

- osync() for ordering

- dsync() for durability
28
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nosync, fsync and osync
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osync() use cases
File formats like doc embed a number of 
files inside them [Harter11]
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Avoiding re-ordering

We use durability notifications to know 
when writes leave the disk cache

We avoid having writes we don’t want 
re-ordered in the disk cache at the 
same time
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This is not a problem for new data blocks

In ordered journaling mode, even if tx fails, 
data block cannot be rolled back
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overwritten data blocks
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Using checksums, delayed 
writes and in-order 

recovery, the optimistic 
protocol ensures 

consistency without flushing
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Evaluation
Is OptFS reliable to random crashes?

- In 400 different random crash scenarios, 
OptFS proved to be reliable

What is the performance of OptFS?

- Evaluate on different workloads

- Overwrites in OptFS cause 2 writes: one 
to the journal and one to the file system
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Reliability

Built a crash-testing framework

Workloads:

- Append to a file

- Overwrites to an existing file

Crash after re-ordering writes

Recover from crashed image

Test for consistency

In 400 different crash scenarios, OptFS proved to be  
reliable
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OptFS 
handles data 

writeout 
better

OptFS improves performance significantly (4-10x) 
for certain workloads
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Application level 
consistency

Can meaningful crash consistency be 
built on top of OptFS?

Replaced fysnc() with osync()

Studied behavior on recovery from 
random crashes:

- Gedit

- SQLite
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Consistency in SQLite
File-system consistency SQLite consistency

no sync None

osync() ACI (with eventual 
durability)

fsync() ACID

Experimentally SQLite is consistent, 
but potentially stale

Crash SQLite in the middle of a transaction
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Case studies: Application 
level consistency

Ext4 w/o flush Ext4 w/ flush OptFS

Inconsistent 73 0 0

Old state 8 50 76

New state 19 50 24

Time per op (ms) 23.28 152 15.3

Total crashpoints: 100
Application: SQLite
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Case studies: Application 
level consistency

Ext4 w/o flush Ext4 w/ flush OptFS

Inconsistent 73 0 0

Old state 8 50 76

New state 19 50 24

Time per op (ms) 23.28 152 15.3

Total crashpoints: 100
Application: SQLite

SQLite is able to provide ACI semantics with osync(), 
at 10x performance 
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Conclusion
OptFS provides consistency without flushes

Asynchronous Durability Notifications allow 
the disk to perform optimally

Eventual Durability trades freshness for 
increased performance

osync() provides a cheap primitive to order 
application writes
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Project Ideas

1. Delayed Durability 
2. OptFS on Flash 
3. Optimistic btrfs
4. p-inconsistency for RAID, Flash
5. Rewrite applications with osync()/dsync()
6. Forced Unit Access (FUA) study
7. Consistency testing framework
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Project Ideas

If you are interested, come talk to me

vijayc@cs.wisc.edu 

7366 CS
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Thank you

Questions?
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Backup Slides
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Resource Consumption

53

FS CPU Memory (MB)

ext4 (flush) 3.39 487

ext4 (no flush) 14.86 516

OptFS 25.32 749
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Why not just fsync() 
in the background?

Does not solve the problem for the whole 
system: flushes will still be caused

Any application using foreground fsync() will 
be affected

Many mobile applications have auto sync at 
the same time, causing problems 
[Agrawal12] 

54
Wednesday, October 9, 13



References
[Cipar12] Cipar, James, Greg Ganger, Kimberly Keeton, Charles B. Morrey III, 
Craig AN Soules, and Alistair Veitch. "LazyBase: trading freshness for performance 
in a scalable database." In Proceedings of the 7th ACM european conference on 
Computer Systems, pp. 169-182. ACM, 2012.

[Chidambaram12] Chidambaram, Vijay, Tushar Sharma, Andrea C. Arpaci-Dusseau, 
and Remzi H. Arpaci-Dusseau. "Consistency without ordering." In Proceedings of 
the 10th USENIX Symposium on File and Storage Technologies (FAST’12). 2012.

[Chidambaram13*] Chidambaram, Vijay,  Thanumalayan Pillai, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau. “Optimistic Crash Consistency.” 
Submitted to SOSP 2013

[Ganger94] Ganger, Gregory R., and Yale N. Patt. "Metadata update performance 
in file systems." In Proceedings of the 1st USENIX conference on Operating 
Systems Design and Implementation, p. 5. USENIX Association, 1994.

55
Wednesday, October 9, 13



References

56

Wednesday, October 9, 13



References
[Ghemawat03] Ghemawat, Sanjay, Howard Gobioff, and Shun-Tak Leung. "The 
Google file system." In ACM SIGOPS Operating Systems Review, vol. 37, no. 5, pp. 
29-43. ACM, 2003.

[Hagmann87] Hagmann, Robert. Reimplementing the Cedar file system using 
logging and group commit. Vol. 21, no. 5. ACM, 1987.

[Hitz94] Hitz, Dave, James Lau, and Michael Malcolm. "File system design for an 
NFS file server appliance." In Proceedings of the USENIX Winter 1994 Technical 
Conference, pp. 235-246. 1994.

[Keeton04] Keeton, Kimberley, Cipriano Santos, Dirk Beyer, Jeffrey Chase, and 
John Wilkes. "Designing for disasters." In Proceedings of the 3rd USENIX 
Conference on File and Storage Technologies, pp. 59-62. 2004

56

Wednesday, October 9, 13



References

57

Wednesday, October 9, 13



References

[Lamport98] Lamport, Leslie. "The part-time parliament." ACM Transactions on 
Computer Systems (TOCS) 16, no. 2 (1998): 133-169.

[Lamport01] Lamport, Leslie. "Paxos made simple." ACM SIGACT News 32, no. 4 
(2001): 18-25

[McKusick84] McKusick, Marshall K., William N. Joy, Samuel J. Leffler, and Robert 
S. Fabry. "A fast file system for UNIX." ACM Transactions on Computer Systems 
(TOCS) 2, no. 3 (1984): 181-197.

[Ongaro2013] Ongaro, Diego, and John Ousterhout. "In Search of an 
Understandable Consensus Algorithm." 2013.

57

Wednesday, October 9, 13



References

58

Wednesday, October 9, 13



References
[Ousterhout10] Ousterhout, John, Parag Agrawal, David Erickson, Christos 
Kozyrakis, Jacob Leverich, David Mazières, Subhasish Mitra et al. "The case for 
RAMClouds: scalable high-performance storage entirely in DRAM." ACM SIGOPS 
Operating Systems Review 43, no. 4 (2010): 92-105.

[Prabhakaran05] Prabhakaran, Vijayan, Lakshmi N. Bairavasundaram, Nitin Agrawal, 
Haryadi S. Gunawi, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 
IRON file systems. Vol. 39, no. 5. ACM, 2005

[Rosenblum92] Rosenblum, Mendel, and John K. Ousterhout. "The design and 
implementation of a log-structured file system." ACM Transactions on Computer 
Systems (TOCS) 10, no. 1 (1992): 26-52.

[Shvachko10] Shvachko, Konstantin, Hairong Kuang, Sanjay Radia, and Robert 
Chansler. "The hadoop distributed file system." In Mass Storage Systems and 
Technologies (MSST), 2010 IEEE 26th Symposium on, pp. 1-10. IEEE, 2010.

58

Wednesday, October 9, 13


