Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung
The Google File System
19th ACM Symposium on Operating Systems Principles, , October, 2003.
—71. What is the motivation for this work? What are their assumptions? What do you
think is most impressive about their goals?

Component failures are common. Files are huge, but not too
mantpf them. Most files are mutated by appending new data; once
wri%n, most are only read and often only sequentially. Co-design
with applications (map reduce).

*-e,%*ua«{' well- %‘;&ML s oS (o

vvm\\ﬂ?l—e c;\w,uck s meuM«H/@__ QT)FQ@L%

\}\/or\;ﬁ/% o lodos d hodes a %%/ﬁte. Ac,l,uﬂqr

2. What is the overall architecture of their system? Is a master the right design
decision?
Single master and multiple chunkservers accessed by multiple
cients.

e 1

Maston %JV“&QQ—J Wl’k J “HAQ Lba»v(’&N’
eds|wiles Q%LU\ A/D\/(/\% VL -,

3. Whatare the interactions between the nodes on a read operation? Is the master
likely to be a bottleneck for reads?

Allowed to cache translations from master and can batch requests.

4. What data structures are kept on the master? Which are persistent? What are
not? How does the master get information crash? What are the pros
and cons of keeping all of that meta-data in main memory?

Master tracks 3 types of metadata: the file and chunk

namespaces, the mapping from files to chunks, and the locati(_)‘_ri_gf/)
each chunk's repla kept in memory. Firsttwo are

persistent by Togging to local disk and replicated on remote

machine. Chunk locations are soft state; asked on master startup

and whenver a chunkserver joins.

L R Lor Q%MB ke m@bwmfk
[oee] fle NN
200 B ok SH‘N%%?—’
/,$ 266 W o% e dode ?

~Weed %\@J@ cont qu\a (lout &L%L\

D —
>

odlow sevver cresWn’ R
_ (,o"\/béw@kﬁ((98,. C’(LM?L‘S’CVM&’ Uyﬂérﬂ/ej’ %M)Z&(Zi (1" A@-ﬂ\)

e Wi op

- \/\;Lou»k lggg{g S o e Bg‘oﬂsﬂ e move
- F C‘b\uﬂ\céf@mw S'l?uﬂLS e, %ﬁ ‘LFLQA‘,-L@'_/

5. GFS makes the design decision to not explicitly cache files on either the clients or
the chunkservers. Does this seem like a good decision?

e, Stea ww% *@L\&M&@\ ket 2 low ve-use

6. GFS makes the design decision to use fixed sized chunks of 64 MB? What factors
argue for large chunk sizes? What factors argue for small chunk sizes? How does
64 MB interact with Map-Reduce applications? Does 64 MB seem reasonable?
Large: Reduce interactions between master; persistent TCP
\M\ —= connection with chunkserver, reduce size of metadata stored on
b> master (memory, 64 bytes per 64 MB chunk). Small: Small files in just one chunk,
L e could be a
c\eounk hot spot. Limits size of mappers; smaller mappers are better for load-balancing.

Cﬂv@/&,
\a2y allo co o~ fé ks (Qle o \oead %:\

7. GFS specializes its consistency model to its application domain. To understand
Table 1: What does it mean for replicas to be consistent? What does it mean to
be defined? What is the difference between a write? and a record append? How
do the different states occur? Why or why not are all of these states acceptable?

Consistent: All replicas have the same data. Defined:

Consistent AND will see results of mutation writes in their

entirety.

Append: At least once semantics; must be able to discard duplicates;
implication of failure: app must retry until successful. Concurrent
writes discouraged!

R, SUC C AN M wﬁx ‘e —5 C\,LL\\/;\.Q,A\J
b-‘*lo vl lenonee

('OV\L/LUM/\.QJVLJV —V sh \L Com S ss\\—‘U/LT, \D‘M{‘ M
be wldentoayed

8. Isitever possible for a client to read an inconsistent (i.e,, stale) replica? Do you
think this is acceptable?

Yes possible to read stale data, since might have the location cached;

not as big of deal if reading only from end of file since will see

premature end-of-file instead of old data.

’ 9. What happens when a client wants to write? Why is it helpful to have a primary?
Are leases appropriate here? How does the replica-update protocol achieve
decent performance while ensuring that replicas are kept consistent?

o 2.\ & Taee O

‘k\ Cbug//& asles W\Q‘\"’f‘f %f < thbml&@w sl s w/ LQaSy@ -+ /\ﬂf) Lf CeX __,

OV

2—\ M 5%’0’\ W EP Z‘)\/kzi AN C \ tﬁMJQ CexIA Co C (/"L .

2y o ‘FUL&E\—QA A2 4o Cbgfﬂc@ et (gﬂ& Hzfgv
cotheo

Ll\ Pebern neplica adk . Client wride A st b
f?”‘\/‘mv% ,
—\L O:\)W , P \ w\edvég &MW)AQ)L %%,gt
- ’R‘b %-;’év\— w{& ’@F‘S Qt(i‘nc:l_g/\:t-)z%\
5,3 ?f . Ww’“‘“‘% 100« .f\gxf-l/i\ e S 66 o\ﬁg\ﬁ/f‘

&) QLQ\) Ceh NL(JVES,
/& ?iivwwua /ULTJW o Lasde

——————

:P(‘\W\@vvv\- LJ&‘@A /:@“ETPS @r@M

10. Why might the write protocol lead to inconsistent regions? undefined?

If a write fails, the data is left in an inconsistent state.
Will try op again. Undefined if interleave multiple requests
across boundary (will be consistent though).

11. How is the protocol for record appends different than ordinary writes? (Why
must the the primary sometimes pad the previous chunk?) Why might this
protocol lead to some inconsistent entries? How do applications deal with this
model?

Section 2.7.2 + 2.

%How does the master organize the file namespace? What is the advantage of
their approach compared to a traditional Unix directory structure?

In their workload, probably common to be creating many files
in the same directory concurrenty (by multiple reducers).
Important to be able to overlap.

- 02 | 74 é el CACoAeS Ik Sama L ‘gmw /ﬁwaa,,aw&%:z;
' 2/174 e ittéA. M

- ‘O‘f@f) nood Mocks o 7 Ain
\ - (“OL&"/L éﬁ (éé’%f/‘t au

FELe i

- %/w b toufe Dyl on oL @?M /jj ZQ ne W
C

r/\a‘iz;é:
(e (

13. Where replicas are placed is an important factor for both reliability and
performance. What is the GFS policy for placing replicas?

- S/Q/LQ%J M/é””&“ ALAD RS /ld(l')é;s

- Diocl fom closest (srume dccle g

Adpedes: o —LppLs m\g Al L@D,Z% ;L a
Mox ({v"p/é_ copies 4 %) eliako %F

Dk s ame Ak Bl

) ///be?[/C?C@WL oA AM@J

14. What happens when a file is deleted? How is the physical space on disk actually
freed? Do you think this is a better approach than having the master explicitly
tell the chunkservers to delete the space?

Good interaction with treating mapping as soft sate. Good
when some creation ops succeed and others fail or when master
doesn't even know about some. Can remove stale copies at this
time as well.

— Sﬁ Jornavng

— jlau ;L 7o j@ym c’/ le clg Z(/(ot ofs . za/ %az/%

- pW/; S r Wi AQ@S Wlasvlﬁ\ 3 CéLuMLS
_ mastey M/DLLQ/G—/ @/ 7LZ¢D%C mt ?)(”(@ 54/&/

- ()LWL SN g Cexo i (A,& (’Q ,t’—Q_/

15. What is the role of chunk version numbers in the protocol?

thtf’éﬁyk e ,,Qacél ned /&Q%
~ !(.0,273 u)/ Lo CL\ Cluzom[@

—polec srne Moire oS- AL ot AR

16. As discussed so far, what is the single point of failure in the system? How do
they improve availability in GFS?

N s

vQ@yDZ’” LA W Shadeo sl /,L&a (a}

— @w b e S}?o\ 7%

17. How do they address the concern of data integrity? Given that they have
multiple replicas, why don't they just compare the data across replicas and vote?
Is their approach ever inefficient?

Voting very expensive; also Failures can lead to
inconsistencies that the application can handle.

é Yy 5 (oS ¢l el suen Mﬂ(

Jne tclev s 7L Fred L S S /@/d ¢

g(/mé)b\u/gjf e »/33

18. Conclusions?

Contributions: Handling node failures so well (making location
of chunks soft state and using checksums for all data), pushing some complexity
into map reduce
framework (tuning to application semantics with appends), simplifying system to
use a single master that can handle all metadata in memory.

Developed FS that really is in

use, scale is impressive. Great to see the infrastructure that is really needed \
to

get something useful working; not just developing concepts for

what is theoretically interesting or to push some idea to the

extreme. Negative of paper (but not of system) is that they don't

do a great job of saying what the new contributions are or pulling

out the conceptual ideas.

Within Google, GFS shows its age: new applications are not all like Map-Reduce, but
expected to support them all.

ij’ E;érk/(,LC"k\\D\/\ \[}S
£~€ W%r o Czed MaeSsher™ WwoT L;
%@/\Qﬁk{, A\@—\(—x e N\ :Dl ané.

E@S\Qr Whee \él’/\()\,@: O\E{l : |
4 A d e s e LOW&()UL‘LOCJI

M

