Byzantine Generals

One paper:
- “The Byzantine Generals Problem”, by Lamport, Shostak, Pease, In ACM Transactions on Programing Languages and Systems, July 1982

Motivation

Build reliable systems in the presence of faulty components

Common approach:
- Have multiple (potentially faulty) components compute same function
- Perform majority vote on outputs to get "right" result

C1
C2
majority(v1,v2,v3)
C3

f faulty, f+1 good components =⇒ 2f+1 total

Assumption

Good (nonfaulty) components must use same input
- Otherwise, can’t trust their output result either

For majority voting to work:
1) All nonfaulty processors must use same input
2) If input is nonfaulty, then all nonfaulty processes use the value it provides

What is a Byzantine Failure?

Three primary differences from Fail-Stop Failure
1) Component can produce arbitrary output
 - Fail-stop: produces correct output or none
2) Cannot always detect output is faulty
 - Fail-stop: can always detect that component has stopped
3) Components may work together maliciously
 - No collusion across components
Byzantine Generals

Algorithm to achieve agreement among “loyal generals” (i.e., working components) given m “traitors” (i.e., faulty components).

Agreement such that:
- A) All loyal generals decide on same plan
- B) Small number of traitors cannot cause loyal generals to adopt “bad plan”

Terminology
- Let $v(i)$ be information communicated by ith general
- Combine values $v(1)...v(n)$ to form plan

Rephrase agreement conditions:
- A) All generals use same method for combining information
- B) Decision is majority function of values $v(1)...v(n)$

Key Step: Agree on inputs

Generals communicate $v(i)$ values to one another:
1) Every loyal general must obtain same $v(i)...v(n)$
2) Any two loyal generals use same value of $v(i)$
 - Traitor i will try to loyal generals into using different $v(i)$’s
3) If ith general is loyal, then the value he sends must be used by every other general as $v(i)$

Problem: How can each general send his value to $n-1$ others?

A **commanding general** must send an order to his $n-1$ lieutenants such that:
- IC1) All loyal lieutenants obey same order
- IC2) If commanding general is loyal, every loyal lieutenant obeys the order he sends

Interactive Consistency conditions

Impossibility Result

With only 3 generals, no solution can work with even 1 traitor (given oral messages)

What should $L1$ do? Is commander or $L2$ the traitor???

Option 1: Loyal Commander

What must $L1$ do?

By IC2: $L1$ must obey commander and attack
Option 2: Loyal L2

What must L1 do?

By IC1: L1 and L2 must obey same order --> L1 must retreat

Problem: L1 can’t distinguish between 2 scenarios

General Impossibility Result

No solution with fewer than $3m+1$ generals can cope with m traitors

< see paper for details >

Oral Messages

Assumptions
A1) Every message is delivered correctly
A2) Receiver knows who sent message
A3) Absence of message can be detected

Oral Message Algorithm

$OM(0)$

• Commander sends his value to every lieutenant

$OM(m), m > 0$

• Commander sends his value to every lieutenant
• For each i, let v_i be value Lieutenant i receives from commander; act as commander for $OM(m-1)$ and send v_i to $n-2$ other lieutenants
• For each i and each j not i, let v_j be value Lieutenant i received from Lieutenant j. Lieutenant i computes majority($v_1, ..., v_{n-1}$)
Example: Bad Lieutenant

Scenario: m=1, n=4, traitor = L3

OM(1):

OM(0):???

Decision?? L1 = m (A, A, R); L2 = m (A, A, R); Both attack!

Example: Bad Commander

Scenario: m=1, n=4, traitor = C

OM(1):

OM(0):???

Decision?? L1=m(A, R, A); L2=m(A, R, A); L3=m(A,R,A); Attack!

Bigger Example: Bad Lieutenants

Scenario: m=2, n=7, traitors=L5, L6

Messages?

Decision?? m(A,A,A,A,R,R) ==> All loyal lieutenants attack!

Bigger Example: Bad Commander+

Scenario: m=2, n=7, traitors=C, L6

Messages?

Decision??
Decision with Bad Commander+

L1: \(m(A,R,A,R,A) \Rightarrow \text{Attack} \)
L2: \(m(R,R,A,R,A) \Rightarrow \text{Retreat} \)
L3: \(m(A,R,A,R,A) \Rightarrow \text{Attack} \)
L4: \(m(R,R,A,R,A) \Rightarrow \text{Retreat} \)
L5: \(m(A,R,A,R,A) \Rightarrow \text{Attack} \)

Problem: All loyal lieutenants do NOT choose same action

Next Step of Algorithm

Verify that lieutenants tell each other the same thing
- Requires rounds = \(m+1 \)
- OM(0): Msg from Lieut i of form: "L0 said v0, L1 said v1, etc...

What messages does L1 receive in this example?
- OM(2): A
- OM(1): 2R, 3A, 4R, 5A, 6A

All see same messages in OM(0) from L1,2,3,4, and 5
m(A,R,A,R,A,-) \Rightarrow \text{All attack}

Signed Messages

New assumption: Cryptography
A4) a. Loyal general’s signature cannot be forged and contents cannot be altered
 b. Anyone can verify authenticity of signature

Simplifies problem:
- When lieutenant i passes on signed message from j, know that i did not lie about what j said
- Lieutenants cannot do any harm alone (cannot forge loyal general’s orders)
- Only have to check for traitor commander

With cryptographic primitives, can implement Byzantine Agreement with \(m+2 \) nodes, using SM(m)

Signed Messages Algorithm: SM(m)

1. Commander signs v and sends to all as (v:0)
2. Each lieut i:
 A) If receive (v:0) and no other order
 1) \(V_i = v \)
 2) send (V:0:i) to all
 B) If receive (v:0:j:...:k) and v not in \(V_i \)
 1) Add v to \(V_i \)
 2) if (km) send (v:0:j:...:k:i) to all not in j...k
3. When no more msgs, obey order of \(\text{choose}(V_i) \)
SM(1) Example: Bad Commander

Scenario: m=1, n=3, bad commander

What next?

V1={A,R} V2={R,A}
Both L1 and L2 can trust orders are from C
Both apply same decision to {A,R}

SM(2): Bad Commander+

Scenario: m=2, n=4, bad commander and L3

Goal? L1 and L2 must make same decision

V1 = V2 = {A,R} \implies Same decision

Other Variations

How to handle missing communication paths
< see paper for details>

Assumptions

A1) Every message sent by nonfaulty processor is delivered correctly
 - Network failure \implies processor failure
 - Handle as less connectivity in graph
A2) Processor can determine sender of message
 - Communication is over fixed, dedicated lines
 - Switched network???
A3) Absence of message can be detected
 - Fixed max time to send message + synchronized clocks \implies If msg not received in fixed time, use default
A4) Processors sign msgs such that nonfaulty signatures cannot be forged
 - Use randomizing function or cryptography to make likelihood of forgery very small
Importance of Assumptions

"Separating Agreement from Execution for Byzantine Fault Tolerant Services" - SOSP'03

Goal: Reduce replication costs
 • $3f+1$ agreement replicas
 • $2g+1$ execution replicas
 - Costly part to replicate
 - Often uses different software versions
 - Potentially long running time

Protocol assumes cryptographic primitives, such that one can be sure "I said v" in switched environment

What is the problem??