
Petal: Distributed Virtual Disks

Garrett Kolpin
CS 739: Distributed Systems

University of Wisconsin, Madison

Lecture Date here
Spring 2006

1 Overview

Petal aims to provide a distributed, fault tolerant, and scal-
able data storage system. Clients view the Petal system as
a group of virtual disks. Clients interface with Petal as
they would any other block device, by specifying a vir-
tual disk and an offset. This allows nearly any file system
to use Petal for data storage. Doing this only requires a
change to the current disk driver.

2 Problem Statement and Assump-
tions

It is the goal of the Petal designers to provide a globally
accessible storage system that can tolerate single compo-
nent failures, is easy to administer, has load balancing ca-
pabilities, and is possibly geographically distributed.

Petal provides an abstract block device in the form of
a virtual disk. There is an important distinction that must
be made between Petal and other distributed file systems
such as NFS or AFS. Petal is a distributed storage system,
not a distributed file system. That is, the interface pro-
vided by Petal is a block-level interface. This has some
important implications. First, since Petal has a block-
level interface, existing software that works on the block
level can be used rather than having to rewrite new soft-
ware that will only work with the storage system. For
instance, existing file systems that rely on block-level in-
terfaces will work just fine on top of Petal.Also, having
a block interface makes the system simpler, and the de-
signers can focus more on providing mechanisms rather

than policies. The policy decisions can then be left up to
the designers of the file systems which will interface with
Petal.

Because of the distributed nature of Petal, some differ-
ent assumptions about how the disks are accessed have to
be made. Current file systems assume that they have sole
access to the disk volume. However, in the case of Petal,
multiple clients have access to the same disk volumes at
the same time.

3 Design

3.1 Virtual to Physical Translation

The problem in this case is that clients will ask for blocks
in the form ¡disk-identifier, offset¿. This must be trans-
lated into the form ¡server-identifier, disk-identifier, disk-
offset¿. This translation occurs by first going to the global
map and retrieving the redirect server. This will then re-
spond with the physical location of the request which is
essentially an enumeration of the servers over which the
virtual disk is spread. From this, it is possible to find the
actual physical location of the block.

The V. directory and the global map are both small ta-
bles, while the physical map has the most information
stored in it. The tables are stored this way probably be-
cause it is more reliable since there is less to remain con-
sistent across servers. As a general rule of thumb, there is
probably no need to share information you don’t need to
share.

Because of the distributed nature of Petal, there are
other assumptions that can be made with normal disk in-

1



terfaces that no longer apply here. First, it cannot be as-
sumed that blocks with a close virtual address are nec-
essarily physically close to one another on disk. In fact,
two virtually ’close’ blocks may actually be on two phys-
ically different machines. Furthermore, the way in which
space gets allocated differs substantially from most file
systems. Using a regular file system on a local disk, the
amount of space required for the file system is allocated
at file system creation time. However, Petal utilizes a
lazy allocation scheme where space doesn’t actually get
allocated until a write operation. It is also possible to
initially allocate a huge amount of space because it is
unlikely that the space will be needed immediately, and
it can be allocated even without the required amount of
physical storage available. If the storage demands ever
reach the limit of the physical disks, then more disks can
simply be added. Lazy allocation also helps to avoid frag-
mentation problems as data is written in large contiguous
blocks. If an application absolutely needed knowledge
about whether the required space actually exists, then in
order to preallocate space, one could simply write data to
the number of blocks needed.

3.2 Snapshots

There are various goals for the snapshot system. First, we
don’t want to recreate all the data. Doing this would re-
quire space to store unnecessarily large amounts of data.
Instead, we can essentially just keep track of the changes.
By storing the ’deltas’, we can create a snapshot that is
space efficient. Also, after the snapshot process, there
may now exist different data at the same offset. In order to
keep track of the most recent data, an epoch number is in-
cremented which will allow Petal to differentiate between
different snapshot data.One implication of the snapshot
is that the lowest level of Petal needs to keep track of the
epoch numbers. This is because the server will only re-
ceive a virtual disk and offset from the client. It’s clear
that the client will have no knowledge of the epoch num-
bers itself, which necessitates the server keeping track of
this information.

3.3 Reconfiguration

In Petal, one goal is to be able to scale the system easily
and without much administrative overhead. Thus, it is

relatively easy to add disks to machines and add or remove
machines from the network. We’ll first look at the process
of adding a new disk to a machine. The essential goal here
is to have some method to place data on the new disk.
There are a couple of approaches that can be taken. Data
could be taken off the existing disks forcefully and placed
on the new disk in order to create balanced load across
the disks. Another approach is to do nothing and rely on
the system to place newly written data to the new disk.
There is not necessarily an assumption that all disks on
a machine will have the same amount disk capacity. If
disks have varying capacity on a single machine, then the
machine local maps will need to be maintained in order
to know which disks have what capacity.

Now we’ll deal with the case of adding a new machine
to the network. This is handled through a three step pro-
cess. First, a new global map needs to be created which
affects all servers. Second, all the virtual disk directo-
ries need to be changed so that the new global map is
referenced. Again, this affects all servers. Finally, data
has to be redistributed across the newly added machine.
This is especially important when striping over all disks.
New writes go to the new global map, but reads go to
the old one. However, the reader should check with the
new global map to make sure it will not be reading stale
data from the old location. The downside to always hav-
ing readers check the new data is that there is now twice
as much network traffic during reads, and the result is
that whole reconfigurations could take hours to complete.
Therefore, a policy decision was made to minimize the
performance pains. The problem is solved by moving data
incrementally. The virtual disks address range is divided
into three types: old, new, and fenced. Reads bound for
the old or new regions go to the old and new global maps.
Reads bound for the fenced region are redirected to the
new or old maps as appropriate. The only downside is
that this could tie up a disk that has a hot spot on it. Thus,
the portions of the disk that are to be moved are selected
randomly so that hot spot data is not moved all at once.

3.4 Data access and recovery

The basic method to store data is to spread the data to
more than one node. This is done for load balancing
and for better operation under failure. Thus, when using
chained declustering both a primary and secondary copy

2



are kept for blocks. Reads can be serviced from either
the primary or secondary copies. However, write requests
must always be serviced by the primary server first. Since
blocks are locked upon writing, we need this ordering to
avoid deadlocks. Without this order, two concurrent writ-
ers could obtain exclusive locks on one of the primary or
secondary copies of the blocks, and they will reach dead-
lock at this point because neither will release the lock they
currently hold. Once the server has determined that it is
the primary server for a block of data, it will send out a
write request to the secondary copy. Busy bits are also set
when writing to help during recovery from a failure. If a
failure were to occur, the busy bits would be used to de-
termine which blocks were being written at the time the
failure occurred.At this point, some decision will have to
be made about how to bring both copies of the data to a
consistent state. Upon recovery, if the primary and sec-
ondary copies of a block are inconsistent and only half
of the block was written, then the only way to bring them
both back to a reasonable state is to use a log. In the ab-
sence of a log, one or the other copies has to be chosen
to be the ’most consistent’ copy, and the other will bring
itself to consistency with it.

4 Evaluation

Table 1 shows a comparison of Petal and a local disk.
From the table it is apparent that a local disk is faster for
blocks of all sizes. Petal performs reasonably for small
reads and writes, but performance degrades for larger
block sizes. Writes are slower than reads because writes
must go to neighboring servers as well. Clients don’t is-
sue writes in parallel; instead the primary sends the data
to the secondary which results in higher latency. Waiting
for the log to be properly updated is also a source of added
latency during write operations.

In Figure 7 we see a glimpse of the scalability of Petal.
However, they only show Petal scaling with four servers.
It would be nice to see how Petal scales in an environment
with many more servers.

The authors give no indication about the performance
of reconfiguration, recovery, etc. It would have been nice
to see performance numbers for reconfiguration because
of the time spent describing the reconfiguration mecha-
nisms in the design section.

5 Conclusion

To conclude, Petal provides an easy to manage distributed
storage system that has the ability to be scaled easily. It
provides a very simple block interface and can give clients
the view of multiple virtual disks. The replication and
data distribution is completely invisible to the user so that
there is no need to run specialized client software besides
the Petal device driver.

3


