
Byzantine Generals in Action"
Implementing Fail-Stop Processors
FRED B. SCHNEIDER
Cornell University

A fail-stop processor halts instead of performing an erroneous state transformation that might be
visible to other processors, can detect whether another fail-stop processor has halted (due to a failure),
and has a predefined portion of its storage that will remain unaffected by failures and accessible to
any other fail-stop processor. Fail-stop processors can simplify the construction of fault-tolerant
computing systems. In this paper, the problem of approximating fail-stop processors is discussed. Use
of fail-stop processors is compared with the state machine approach, another general paradigm for
constructing fault-tolerant systems.

Categories and Subject Descriptors: B.1.3 [Control S t ruc tu res and Microprogramming] : Control
Structure Reliability, Testing and Fault-Tolerance--redundant design; B.3.4 [Memory St ruc-
tures]: Reliability, Testing and Fault-Tolerance--redundant design; C.2.4 [Computer -Communi-
cat ion Networks] : Distributed Systems; C.4 [Computer Sys tems Organizat ion] : Performance
of Systems--reliability, availability, and serviceability; D.4.5 [Operat ing Systems]: Reliability--
checkpoint/restart, fault-tolerance

General Terms: Reliability

Additional Key Words and Phrases: Byzantine Generals, fail-stop, fail-fast

1. INTRODUCTION

Designing and programming a fault-tolerant computing system is a difficult task.
Due to a failure, a processor might exhibit arbitrary behavior, resulting in
erroneous outputs or in the destruction of critical state information. Even when
multiple processors are used, a malfunctioning processor can cause problems by
causing erroneous state information to be visible to other processors. This could
have disastrous consequences if these processors take actions based on such
information. Clearly, using processors that take into account the following
property avoids these difficulties.

Halt on Failure Property. A processor will halt instead of performing an
erroneous state transformation that will be visible to other processors.

Processors that merely halt in response to failures, however, are not sufficient
for implementing systems whose correctness criteria involve generating outputs

This work was supported in part by NSF Grant MCS-8103605.
Author's address: Department of Computer Science, Cornell University, Ithaca, NY 14853.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
© 1984 ACM 0734-2071/84/0500-0145 $00.75

ACM Transactions on Computer Systems, Vol. 2, No. 2, May 1984, Pages 145-154.

146 Fred B. Schneider

in a timely manner. Tasks that were being run on a halted (malfunctioning)
processor must be continued, if real-time constraints are to be met. This means
that processors must also satisfy a second property:

Failure Status Property. Any processor can detect when any other processor
has failed, and therefore has halted.

This permits other processors to assume the tasks of a failed processor. Of course,
there are obvious limitations to this strategy--there must be sufficient processing
capacity in the smaller system for it to be able to continue performing all of its
tasks in a timely manner.

Finally, in order to continue a task that was running on a failed processor, the
state of that task must be available to the processor that is to continue it. This
can be accomplished by using stable storage--storage that is unaffected by any
failure and is accessible to every processor. Thus, we require processors to satisfy
a third property:

Stable Storage Property. The storage of a processor is partitioned into stable
storage and volatile storage. The contents of stable storage are unaffected by any
failure and can always be read by any processor. The contents of volatile storage
are not accessible to other processors and are lost as a result of a failure.

A fail-stop processor is a processor that satisfies the Halt on Failure Property,
the Failure Status Property, and the Stable Storage Property. To construct a
fault-tolerant computing system that can tolerate up to f failures for an applica-
tion requiring N processors (assuming there are no failures), N + [fail-stop
processors are employed. Whenever a fail-stop processor in this system halts, the
other fail-stop processors detect this and partition its work among themselves by
reading from its stable storage.

Fail-stop processors simplify, but do not completely solve, the problem of
building fault-tolerant computing systems. The problem is simplified because it
is unnecessary to cope with arbitrary behavior and corrupted state information.
However, it is still necessary to design programs that make infrequent references
to stable storage, which is likely to be expensive and slow, while saving enough
state information there so that a task can be continued only by accessing stable
storage.

Perhaps the strongest argument for investigating the implementation of fail-
stop processors is that most protocols for implementing fault-tolerant systems
assume models where processors are either fail-stop processors or their equiva-
lent. 1 In some models, instead of the Failure Status Property, "timeouts" are
used to detect failures. However, use of timeouts requires the further assumption
that processor clocks are synchronized. Otherwise, two processors might not
agree that a third has halted, which can have disastrous consequences if the third
processor has not. In other models, the Stable Storage Property is not assumed;
instead, state information is replicated at other processors. However, this turns
out to be just an approximation of the Stable Storage Property.

1 The only work we know of t h a t does no t involve fail-stop or s t ronger a s sumpt ions about processor
failures is described in [6], [7], and [9].

ACM Transactions on Computer Systems, Vol. 2, No. 2, May 1984.

Byzantine Generals in Action: Implementing Fail-Stop Processors • 147

Real processors do not satisfy the Hal t on Failure, Failure Status, or Stable
Storage properties. In fact, most real processors are not even good approximations
of fail-stop processors. This is disappointing in light of the number of protocols
writ ten tha t assume processors are fail-stop. In this paper, we develop an
implementat ion of a fail-stop processor approximation. This serves two purposes:
First, it gives a feel for the cost and complexity of implementing fail-stop
processors. Comparison of protocols tha t assume fail-stop processors with pro-
tocols tha t make weaker assumptions (e.g., Byzant ine Agreement protocols [1, 8,
10, 11]) is then possible. Secondly, our fail-stop processor approximation is a
first step toward a practical realization of fail-stop processors.

We must be content with only an approximation of a fail-stop processor
because it is impossible to implement a completely faul t- tolerant computing
system using a finite amount of hardware. With a finite amount of hardware, a
finite number of failures could disable all error detection facilities and thereby
allow behavior tha t violates the propert ies tha t define a fail-stop processor. Our
approximation is for a k-fail-stop processor--a collection of processors and mem-
ories tha t behaves like a fail-stop processor unless k + 1 or more failures occur
within its components . Obviously, as k approaches infinity, a k-fail-stop processor
becomes closer to the ideal it approximates.

We proceed as follows: Section 2 contains the design and correctness argument
for a k-fail-stop processor. Section 3 concerns techniques to combine a collection
of k-fail-stop processors into a faul t - tolerant computing system. In Section 4, the
fail-stop processor approach is contras ted with the state machine approach,
another general technique for construct ing faul t- tolerant computing systems.
Finally, Section 5 contains a discussion of other ways to approximate fail-stop
processors and considers some open problems.

2. APPROXIMATING FAIL-STOP PROCESSORS

A k-fail-stop processor F S P is implemented by a collection of real processors,
each with its own storage, tha t are in terconnected by a communicat ions network.
Failures tha t could result in another fail-stop processor reading the results of an
erroneous state t ransformat ion are detected by voting; the effects of other failures
are masked. The implementat ion consists of:

(1) k + 1 p-processes (p for program), each running on its own processor; let
p (FSP) = { pl , p2 pk+l } be this set of processes;

(2) 2k + 1 s-processes (s for storage), each running on a different processor; let
s (FSP) = Is1, s2 szk+l} be this set of processes.

The question of allocating processors to processes is discussed in Section 3.
A program running on F S P is run by each of the k + 1 p-processes in p (F S P) .

Failures tha t should cause F S P to halt are detected by comparing results when
each p-process in p (F S P) writes to stable storage in FSP, since reading stable
storage is the only way the effects of a failure can be made visible. Because
p-processes run on different processors, they fail independently. Provided fewer
than k ÷ 1 failures occur in the processors running p-processes, if any failure
tha t should cause F S P to be halted occurs then there will be a disagreement in
the write requests made by its p-processes. This disagreement will be detected
by its s-processes.

ACM Transactions on Computer Systelns, Vol. 2, No. 2, May 1984.

148 • Fred B. Schneider

A copy of the contents of the stable storage of F SP is stored by each of the
s-processes in s(FSP). Since there are 2k + 1 s-processes, each running on a
different processor, after as many as k failures in these processors a majority of
them will still be able to access correct values. Of course, this presupposes that
each correctly functioning s-process updates it state whenever a write is per-
formed to stable storage; a protocol for this is described below.

The only way a p-process can access stable storage is by sending messages to
s-processes. These messages m contain the following information:

m.time the time at which this request was made according to the local
clock on the processor running the requesting p-process;

m.rectime the time this request was received according to the local clock on
the processor running the s-process receiving the request;

m.type depending on the request, either "read" or "write";
m.var the variable in stable storage to be written if m.type = write;

the variable in stable storage to be read if m.type = read;
m.val the value to be written if m.type = write.

We make the following assumption about the communications network.

Network Reliability Assumption. Messages are delivered uncorrupted and the
process orig(m), originating a message m, can be authenticated by its receiver.

In theory, satisfying this assumption requires that there be 2k + 1 independent
and direct communication links between each p-process and s-process. Independ-
ent channels allow the majority value to be taken as the value of the message--
this value will be correct provided fewer than k + 1 failures occur; direct channels
allow authentication of message origin. In practice, a packet-switching network
can be made to approximate the Network Reliability Assumption. Checksums
and message retransmission are used to ensure that messages are delivered
uncorrupted with high probability; digital signatures implement authentication
(with high probability).

An s-process for a k-fail-stop processor FSPi in a system with up to N k-fail-
stop processors FSP1, FSP2 FSPN executes the program in Figure 1. There,
"choose (m, M)" stores an arbitrary element from M into m, and "CLOCK"
evaluates to the current time according to the processor's local clock. "Stable
[. • •]" is the copy of stable storage maintained by this s-process. In addition, we
require that when a p-process pj makes a request to stable storage of FSPi, it
disseminates the request in a way that satisfies IC1 and IC2:

IC1. Ifpj is nonfaulty, then every nonfaulty s-process s, in s(FSPi) receives the
request within 5 seconds (as measured on s,'s clock).

IC2. If s-processes s, and sv in the same k-fail-stop processor are nonfaulty, then
both of them agree on every request from Pi-

Condition IC1 ensures that all s-processes receive a message within a bounded
length of time 5 whenever a request is made by a nonfaulty p-process. Condition
IC2 ensures that all s-processes will agree on a request, even if the p-process
making the request is faulty. IC2 is necessary because a faulty p-process might
make different requests to two different s-processes. The copies of stable storage

ACM Transactions on Computer Systems, Vol. 2, No. 2, May 1984.

Byzantine Generals in Action: Implementing Fail-Stop Processors • 149

owner := i; fai led := false;
do true ---*/* major loop */

f o r s : = 1 t o N
T := CLOCK;
D := bag of reques ts m delivered such that :

orig(m) ~ p (F S P ,) A (m . t ype = read V m. type = write)
do D ~ ¢- -~

m i n T := m i n i m u m value of m . t i m e in D;
m i n R e c T := m i n i m u m value of m.rec t ime such that :

m ~ D A m . t i m e = m i n T
i f m i n R e c T < T - ~ ---*

M := bag of reques ts m such t h a t m E D h m . t i m e = m i n T ;

D : = D - M ;
i f (V m : m E M: m. type = read) --~

do M ~ • ---* choose (m, M); M :-- M - {m};
send Stab le [m.var] to or ig(m)

od
n (Vm, m ' : d i s t i n c t m, m ' E M:

m = m ' h m . t ype = write A orig(m) ~ o r i g (m ')) h

I M t = k + 1 A s = owner h "~ fa i led) ---*
choose (m, M);
Stab le [m.var] := m.val

U o t h e r w i s e --~ i f s = owner h ~ fa i led ---*

fa i led := true;

f o r a l l d E p (F S P I) s e n d "hal t" to d
n o t h e r w i s e ~ skip
f i

f i
n o t h e r w i s e --. s k i p

f i
od

rof
od

Fig. 1. P rogram for s-process in F S P i .

maintained by these s-processes could then become inconsistent if one s-process
performed an update and another didn't.

Finally, we require:

IC3. For each k-fail-stop processor FSP, the clocks of all processors running
p-processes in p (FSP) are synchronized.

IC3 ensures that if a request is made by one nonfaulty p-process in p (FSP) at
time T on its clock, then, since all processes in p(FSP) are running the same
program, the same request is made by each other nonfaulty p-process at time T
on its local clock.

A number of protocols for establishing IC1 and IC2--called interactive consist-
ency or Byzantine Agreement--have been developed [1, 8, 10, 11]. In these
protocols, 5 is based on message delivery time and on maximum difference in the
clock speeds of any two correctly functioning processors running s-processes. At
least f + 1 processors are required to handle up to [faults when messages can be
authenticated [2]. Since our implementation of a k-fail-stop processor need

ACM Transactions on Computer Systems, Vol. 2, No. 2, May 1984.

150 Fred B. Schneider

tolerate at most k failures and involves 2k + I processors for running s-processes,
IC1 and IC2 can be achieved.

A protocol for achieving clock synchronization, as required by IC3, is described
in [3]. The protocol also requires at least f + 1 processors to handle up to [faults
when messages can be authenticated. As described above, for a single k-fail-stop
processor IC3 requires the k + 1 processors running p-processes to have synchro-
nized clocks. Thus, IC3 can be achieved.

2.1 Stable Storage Property

To show that the Stable Storage Property holds for our implementation, we must
show three things:

(1) that a majority of the copies of stable storage are correct and identical as
long as k or fewer failures occur;

(2) that a nonfaulty fail-stop processor can write to its stable storage; and
(3) that any fail-stop processor can read from the stable storage of any fail-stop

processor F S P (including its own) regardless of whether FSP has halted in
response to a failure.

The proof that our implementation satisfies part (1) of the Stable Storage
Property is as follows. All p-processes run the same program, so all nonfaulty
p-processes make the same requests to stable storage. Since by IC3 the clocks of
all nonfaulty p-processes are synchronized, the nonfaulty p-processes will all
make requests at the same time according to their local clocks. By IC1 and IC2,
if a nonfaulty s-process s, receives the first such request by time Tr on its clock,
it will receive all such requests by time Tr + 5 on its clock.

Thus, no request made at time T and received by an s-process at time Tr will
be added to D after Tr + 5, and all s-processes will have the same request (of
time T) in their respective D bags by time Tr + 5. No request made at time T
will be copied from D to M by an s-process before Tr + ~ (on its clock) because
of the way the s-process program is coded. Thus, the contents of M at each
nonfaulty s-process will be the same as at every other nonfaulty s-process.
Execution of the s-process program in Figure 1 is completely determined by the
contents of M. Consequently, each nonfaulty s-process executes identically, so
the nonfaulty s-processes will update their copies of stable storage in the same
way. Since there are 2k + 1 s-processes, at least k + I will be nonfaulty. Therefore,
a majority of the s-processes will update their copies of stable storage.

We now turn to part (2) of the Stable Storage Property. Above, we argued that
all nonfaulty s-processes perform the same changes to stable storage and that
therefore a majority of the copies of stable storage are correct and identical.
From the program in Figure 1 it is clear that a write operation attempted by fail-
stop processor FSPi is not performed by an s-process unless all k + 1 p-processes
in p(FSPi) request it. Moreover, write operations requested by other fail-stop
processors are ignored because of the s = owner conjunct in the guard. Clearly, if
all k + 1 p-processes request an operation, then either none or all have failed in
a way that makes erroneous state information--the value being written--visible
to other processes. If all have failed then arbitrary behavior is permitted because
there have been k + 1 failures. If none have failed then the write will be performed
by the nonfaulty s-processes.
ACM Transactions on Computer Systems, Vol. 2, No. 2, May 1984.

Byzantine Generals in Action: Implementing Fail-Stop Processors

Table I. Interface Between s-process and p-process

151

For p-process Pi in FSPi to write to stable storage in FSPI:
ini t iate a Byzant ine Agreement for the write request
with all the s-processes in s(FSPI).

For p-process pj in FSPI to read from stable storage in FSP:
(1) broadcast the read request to all the s-processes in s(FSP),
(2) use the value received from at least k + 1 different s-processes.

For p-process P1 in FSPI to de termine if FSP has hal ted due to a failure:
read the variable failed f rom the stable storage in FSP.

Finally, for part (3) it suffices to note that a read operation attempted by FSPi
should result in identical responses being sent by nonfaulty s-processes to each
p-process in p (FSPi). If fewer than k + 1 failures occur then at least k ÷ 1 correct
values (from a total of 2k + 1) will be received. Thus, by taking the majority
value of the responses, a p-process can obtain the correct value for the variable
being read.

2.2 Halt on Failure Property

To detect a failure, during each (major) loop iteration it suffices for each
s-process to check the write requests it has received, since spurious writes are
the only means by which the effects of a failure can be made visible to another
process. If

(a) exactly one write request from each of the k ÷ 1 p-processes has been
received, and

(b) all the requests are identical,

then either all or none of the k ÷ 1 p-processes that make up FSP are malfunc-
tioning. (Again, the case where all k ÷ 1 p-processes are faulty need not concern
us here because the definition of a k-fail-stop processor allows it to display
arbitrary behavior under these circumstances.) If write requests from only some
of the k ÷ 1 p-processes in p(FSP) are received, then the p-processes in that fail-
stop processor are all sent a "halt" message, and the stable storage variable/ailed
is set true. (Correctly functioning p-processes will halt upon receiving a "halt"
message from at least k + 1 s-processes.) Once/ailed is true, the values of the
variables in the nonfaulty s-processes don't change since the conjunct "-7/ailed"
guards the assignment statement.

2.3 Failure Status Property

The Failure Status Property is implemented by the variable failed. Any process
can obtain the value of failed at any time by reading it in stable storage. Thus,
FSP can determine if FSPi has halted due to a failure, by reading failed from
FSPi's stable storage

This completes our implementation of a k-fail-stop processor approximation.
The interface between the s-processes and the p-processes is summarized in
Table I.

ACM Transactions on Computer Systems, Vol. 2, No. 2, May 1984.

152 • Fred B. Schneider

3. ASSIGNING PROCESSES TO PROCESSORS

Consider an application tha t requires N fail-stop processors to meet its response-
t ime constraints, if no failures occur. For this implementat ion to be able to
tolerate up to k failures, N + k independent k-fail-stop processors are required.
Use of independent fail-stop processors ensures tha t a single failure will cause at
most one fail-stop processor to halt. Thus, provided k or fewer failures occur,
there will always be at least N fail-stop processors available to run the application.

A naive implementat ion of such a computing system will use 3k + 1 proces-
so r s - -k + 1 processors for p-processes and 2k + 1 processors for s-processes m
for each k-fail-stop processor, resulting in a total of (N + k) × (3k + 1) processors.
Recall, however, tha t programs for fail-stop processors will be s t ructured to make
minimal use of stable storage. Therefore , it would be wasteful to dedicate an
ent ire processor to running an s-process for a single k-fail-stop processor.

Suppose a single processor is able to run S s-processes without delaying any of
the p-processes tha t in teract with those s-processes. Now, we require only
[(N + k)/S] × (2k + 1) processors to run the s-processes and N × (k + 1)

processors for p-processes. Clearly, this is a decrease in the number of processors
over tha t required for the naive implementat ion. However, now the N + k k-fail-
stop processors are not independent - -s -processes of different fail-stop processors
share processors. For tunately , this is not a problem because s-processes are
replicated 2k + 1-fold. Given tha t we are prepared to tolerate at most k failures,
even if S = N + k, so tha t there are only 2k + 1 processors running the
s-processes for all N + k k-fail-stop processors and all of the failures occur in
these processors, there will still be k + 1 s-processes running on nonfaul ty
processors for each of the N + k k-fail-stop processors. Thus, the majori ty of the
s-processes will be running on nonfaul ty processors.

When a fail-stop processor halts, all of the nonfaul ty processors running its
p-processes- -up to k + 1 processors- -hal t . It is unlikely tha t all of these
processors are, in fact, faulty. In order to recover nonfaul ty processors tha t were
associated with a fail-stop processor in which there was a failure, the following
scheme can be used.

Processor Recycling Scheme. Processors are par t i t ioned into three groups:
active, unavailable and available. All processors are initially assigned to the
available group. As fail-stop processors are configured, processors are removed
from the available group and placed in the active group. Whenever a fail-stop
processor halts, those processors tha t were running its p-processes are assigned
to the unavailable group. Processors in the unavailable group run diagnostics,
and any processor tha t passes its diagnotics is reassigned to the available group.

The Processor Recycling Scheme reduces the cost of a failure. Wi thout it, a
failure causes loss of all of the processors running p-processes for the fail-stop
processor in which the failure was detected. Wi th the Processor Recycling
Scheme, only processors tha t are unable to pass their diagnostic tests remain
unavailable. The others are reconfigured into new fail-stop processors.

4. OTHER APPROACHES TO FAULT-TOLERANCE

Our implementa t ion of a k-fail-stop processor is an application of the state
machine approach, a general approach for construct ing distr ibuted programs first

ACM Transac t ions on Computer Systems, Vol. 2, No. 2, May 1984.

Byzantine Generals in Action: Implementing Fail-Stop Processors • 153

described in [5], and later extended for environments in which failures could
occur in [6, 7] and [13]. Given any program, a distributed version that can tolerate
up to k failures can be constructed by running that program on 2k + 1 processors
connected by a communications network in which message origins can be au-
thenticated. 2 Byzantine agreement is used to ensure that each instance of the
program sees the same inputs; majority voting is used to determine the output of
the computation.

Consider an application that requires N processors to run and meet its real-
time constraints. Using the state machine approach directly, a total of N × (2k
+ 1) processors are required to implement a system that can tolerate up to k
faults. Each additional "k-fault-tolerant processor" costs 2k + 1 real processors.
Contrast this with the cost when the fail-stop processor approach is used where
S s-processes can share a single processor. A total of (N + k) × (k + 1)
+ [{N + k)/S ~ × (2k + 1) real processors are required and each additional k-
fail-stop processor costs {approximately) (k + 1) + (2k + 1)IS processors. Thus,
there are cases where, to achieve the same degree of fault-tolerance, the fail-stop
processor approach requires fewer processors than the state machine approach.

However, direct use of the state machine approach on an application has other
advantages over the fail-stop processor approach:

• When using the state machine approach, there is no need to divide the program
state between volatile and stable storage. Also, there is no need to develop
recovery protocols that reconstruct the state of the program based on the
contents of stable storage.

• When using the fail-stop processor approach, additional response time is
incurred when a task is moved from one fail-stop processor to another. Such
delays are not incurred when the state machine approach is used, since all
failures are masked. Thus, it might not be possible to use the fail-stop processor
approach for applications with tight timing constraints.

• When using the fail-stop processor approach, an expensive Byzantine Agree-
ment must be performed for every access to stable storage; with the state
machine approach, Byzantine Agreement need only be performed for every
input read. Thus, if reading input is a relatively infrequent event, the state
machine approach will expend less resources in executing Byzantine Agreement
protocols.

5. DISCUSSION

Our k-fail-stop processor approximation is based on the construction of a reliable
kernel (using the s-processes) that supports stable storage and detects failures.
The kernel is reliable because it is replicated 2k + 1-fold so that the effects of up
to k failures are masked. Applications to be run on a k-fail-stop processor
approximation are replicated only k + 1-fold, which is cheaper but sufficient only
to detect errors and not to mask them.

One way to approximate fail-stop processors is described in this paper; a more
expensive approach was described in [12]. There are undoubtedly other ways to
approximate fail-stop processors. For example, disks are sometimes considered
acceptable approximations of stable storage; a triple-redundant bus can be used

2 If authentication is not possible then 3k + 1 processors are required.

ACM Transactions on Computer Systems, Vol. 2, No. 2, May 1984.

154 ° Fred B. Schneider

to approximate IC1 and IC2 when disseminating requests to disks; and a voter
can be used to detect failures among processors running p-processes. The Tandem
system is reported to employ fail-stop (there, called fail-fast) modules imple-
mented directly by hardware [4]. These approximations are based on engineering
data about how components usually fail; our approximation made no assumption
about the nature of failures. On the other hand, our approximation is quite
expensive--perhaps too expensive for all but the most demanding applications.
This suggests that it might be worthwhile to pursue investigations into how to
cheaply implement fail-stop processor approximations, both with and without
assumptions about failure modes.

ACKNOWLEDGMENTS

N. Lynch and J. Lundelius provided very helpful comments on earlier drafts of
this paper. I am also grateful to K. Birman, D. Gries, L. Lamport, R. Schlichting,
and D. Skeen for discussions and comments on this material. Finally, I am
especially grateful to B. Alpern and O. Babaoglu, who discovered some subtle
bugs in previous versions of the fail-stop implementation in this paper.

REFERENCES
1. DOLEV, D. The Byzantine Generals strike again. J. Algorithms 3, (1982), 14-30.
2. FISCHER, M., AND LYNCH, N. A lower bound for the time to assure interactive consistency. Inf.

Process. Lett. 14, 4, (1982), 182-186.
3. HALPERN, J., SIMONS, S., AND STRONG, R. An efficient fault-tolerant algorithm for clock

synchronization. IBM Research Rep. RJ 4094, IBM, San Jose, Calif., Nov. 1983.
4. KATZMAN, J.A. A fault-tolerant computing system. In Proceedings of the 11th Hawaii Interna-

tional Conference on System Sciences, 1978.
5. LAMPORT, L. Time, clocks, and the ordering of events in a distributed system. Commun. ACM

21, 7 (July 1978), 558-565.
6. LAMPORT, L. The implementation of reliable distributed multiprocess systems. Comput. Net-

works 2 {1978), 95-114.
7. LAMPORT, L. Using time instead of timeout for fault-tolerant distributed systems. Op. 59,

Computer Science Laboratory, SRI International, Menlo Park, California, June 1981. ACM
Trans. Program. Lang. Syst. 6, 2 (April 1984), 254-280.

8. LAMPORT, L., SHOSTAK, R., AND PEASE, M. The Byzantine Generals problem. ACM Trans.
Program. Lang. Syst. 4, 3 (July 1982), 382-401.

9. LAMPSON, B. Atomic transactions. In Distributed Systems--Architecture and Implementation.
Lecture Notes in Computer Science, vol. 105, Springer-Verlag, New York (1981), pp. 246-265.

10. LYNCH, N.A., FISCHER, M.J., AND FOWLER, R. A simple and efficient Byzantine Generals
algorithm. Tech. Rep. GIT-ICS-82/02, School of Information and Computer Science, Georgia
Institute of Technology, Atlanta, Georgia, Feb. 1982.

11. PEASE, M., SHOSTAK, R., AND LAMPORT, L. Reaching agreement in the presence of faults.
J. ACM 27, 2 (Apr. 1980), 228-234.

12. SCHLICHTING, R.D., AND SCHNEIDER, F.B. Fail-stop processors: An approach to designing
fault-tolerant computing systems. ACM Trans. Comput. Syst. 1, 3 {Aug. 1983), 222-238.

13. SCHNEIDER, F.B. Synchronization in distributed programs. ACM Trans. Program. Lang. Syst.
4, 2 {Apr. 1982), 125-148.

Received December 1982; revised August 1983; accepted November 1983

ACM Transactions on Computer Systems, Vol. 2, No. 2, May 1984.

