A. Arpaci-Dusseau Department of Computer Science
CS739: Distributed Systems University of Wisconsin, Madisn

Manageability, availability and performance in Porcupine: a
highly scalable, cluster-based mail service — SOSP’99

1 Introduction

e What were the goals of the Porcupine mail server?

e At a high-level, what are four features of the Porcupineeysthat enable it to meet these
three goals?

e Previous related work investigated building scalable wedh proxy servers froms clusters.
What is more challenging about mail as a service? What twmogfor placing data (and
the corresponding work) were previously investigated fasters? What are the problems
with these approaches?

2 System architecture overview

e One of the keys of Porcupine is that it differentiates ham soft state. What is the definition
of each? What is the benefit of differentiating?

e What are each of the different Porcupine data structures®hay hard or soft state? where
is the data stored (is it replicated)?

e Can you walk through Figure 2?
e How does someorgend mail to a user hosted by Porcupine?

e How does a useretrieve messages from Porcupine? What happens if a node holding a
mailbox fragment is unavailable? What happens if a user geria down?

3 Self management

A primary goal of Porcupine is to deal automatically withelise changes, including node failure,
recovery, and addition.

e How does Porcupine determine which nodes are currentlygbdine service (i.e., how does
the Three Round Membership Protocol work)? Why are Lamgodks used by the mem-
bership protocol?



4

5

What different events trigger Porcupine to run the membprplotocol? Is it possible for
the cluster to be partitioned into multiple groups? How wilk look to the user? Can a node
believe it is part of group, but it is not? What will happen?

Do you think the TRM protocol is a good match for Porcupine?

How is user management assigned to nodes of the system? s¥hagoal when performing
this assignment?

The user manager node is responsible for two pieces of stét: gnessage fragment list and
the user profile soft state. How is the message fragmenelsinstructed? How is the user
profile soft state reconstructed?

How does Porcupine decide which node is responsible for siee profile database itself
(hard state)?

When a new node is added, how does it get used? What datadataltioto it?

Replication and availability

Porcupine replicates the hard state of user database afltbmftagments to improve avail-
ability. In updating the replicas, Porcupine leverageskeeaemantics that are specific to
mail delivery services. For example, the same message megcbaed more than once, a
message that was deleted may temporarily reappear, angblmalgjents acting for the same
user may have different views at the same time. Making theseraptions simplifies sys-
tem design, while improving availability and performanktmw can each of these odd cases
occur?

Why are wall clocks, instead of Lamport clocks, used to syowize updates to the repli-
cated user database?

Assuming no failures, what is the protocol for updating aicgped object? What is the
purpose of the log? Why would a peer need to keep a log too? Wiiae performance
problem with keeping a log? (At what point may the coordima&spond to the initiating
agent??)

If a node with a replicated mailbox fragment disappears, lsoanother replica made???

Dynamic load balancing

Load balancing is performed at the level of individual mgesaends. How does a node
determine the load on another node? Is this a good approaétofoupine?

What two tensions must be resolved when deciding where twe@anew message? How
does Porcupine decide on which node to store a new message?



6 System evaluation

v

How well does the performance of Porcupine scale up thro@gmo@les? How much worse
does replication perform? Why so much worse?

Why does dynamic load balancing perform significantly betit@n static load balancing
given skew in the workload? Do you think the authors’ conceiti high spread factors is
warranted?

Given a heterogeneous configuration (some machines haee fisks), why does dynamic
load balancing help more?

Failure recovery seems to work, as shown in Figures 10 and 11.

Do you think they demonstrated availability, performanaed manageability? Are there
other experiments you would have liked to have seen?

Conclusions

Great example of a system service tuned to its particulakad and assumptions. Took
advantage of soft state and email semantics to simplifygdesnprove availability, perfor-
mance, and manageability.



