
A. Arpaci-Dusseau Department of Computer Science
CS739: Distributed Systems University of Wisconsin, Madison

Manageability, availability and performance in Porcupine: a
highly scalable, cluster-based mail service – SOSP’99

1 Introduction

• What were the goals of the Porcupine mail server?

• At a high-level, what are four features of the Porcupine system that enable it to meet these
three goals?

• Previous related work investigated building scalable web and proxy servers froms clusters.
What is more challenging about mail as a service? What two options for placing data (and
the corresponding work) were previously investigated for clusters? What are the problems
with these approaches?

2 System architecture overview

• One of the keys of Porcupine is that it differentiates hard and soft state. What is the definition
of each? What is the benefit of differentiating?

• What are each of the different Porcupine data structures? are they hard or soft state? where
is the data stored (is it replicated)?

• Can you walk through Figure 2?

• How does someonesend mail to a user hosted by Porcupine?

• How does a userretrieve messages from Porcupine? What happens if a node holding a
mailbox fragment is unavailable? What happens if a user manager is down?

3 Self management

A primary goal of Porcupine is to deal automatically with diverse changes, including node failure,
recovery, and addition.

• How does Porcupine determine which nodes are currently partof the service (i.e., how does
the Three Round Membership Protocol work)? Why are Lamport clocks used by the mem-
bership protocol?

1



• What different events trigger Porcupine to run the membership protocol? Is it possible for
the cluster to be partitioned into multiple groups? How willthis look to the user? Can a node
believe it is part of group, but it is not? What will happen?

• Do you think the TRM protocol is a good match for Porcupine?

• How is user management assigned to nodes of the system? What is the goal when performing
this assignment?

• The user manager node is responsible for two pieces of soft state: message fragment list and
the user profile soft state. How is the message fragment list reconstructed? How is the user
profile soft state reconstructed?

• How does Porcupine decide which node is responsible for the user profile database itself
(hard state)?

• When a new node is added, how does it get used? What data is allocated to it?

4 Replication and availability

• Porcupine replicates the hard state of user database and mailbox fragments to improve avail-
ability. In updating the replicas, Porcupine leverages weaker semantics that are specific to
mail delivery services. For example, the same message may bereceived more than once, a
message that was deleted may temporarily reappear, and multiple agents acting for the same
user may have different views at the same time. Making these assumptions simplifies sys-
tem design, while improving availability and performance.How can each of these odd cases
occur?

• Why are wall clocks, instead of Lamport clocks, used to synchronize updates to the repli-
cated user database?

• Assuming no failures, what is the protocol for updating a replicated object? What is the
purpose of the log? Why would a peer need to keep a log too? Whatis the performance
problem with keeping a log? (At what point may the coordinator respond to the initiating
agent??)

• If a node with a replicated mailbox fragment disappears, howis another replica made???

5 Dynamic load balancing

• Load balancing is performed at the level of individual message sends. How does a node
determine the load on another node? Is this a good approach for Porcupine?

• What two tensions must be resolved when deciding where to place a new message? How
does Porcupine decide on which node to store a new message?

2



6 System evaluation

• How well does the performance of Porcupine scale up through 30 nodes? How much worse
does replication perform? Why so much worse?

• Why does dynamic load balancing perform significantly better than static load balancing
given skew in the workload? Do you think the authors’ concernwith high spread factors is
warranted?

• Given a heterogeneous configuration (some machines have faster disks), why does dynamic
load balancing help more?

• Failure recovery seems to work, as shown in Figures 10 and 11.

• Do you think they demonstrated availability, performance,and manageability? Are there
other experiments you would have liked to have seen?

7 Conclusions

• Great example of a system service tuned to its particular workload and assumptions. Took
advantage of soft state and email semantics to simplify design, improve availability, perfor-
mance, and manageability.

3


