
A. Arpaci-Dusseau Department of Computer Science
CS739: Distributed Systems University of Wisconsin, Madison

Survey: Distributed Operating Systems
Andrew Tanenbaum and Robbert Van Renesse

Computer Surveys, December 1985

Introduction

• What is a distributed operating system? How does this definition compare to the one from the previous lecture?

• What were the goals of distributed systems (in 1980s)? Any difference from goals today?

• What were the defined challenges of distributed systems (in 1980s)? Any differences today?

• What were the (unstated) assumptions made about the computing environment versus today’s environments?

1 Network Operating Systems

• How is a network operating system different than a distributed OS?

• How are network OSes criticized here?

• Are the criticisms of network systems more or less applicable given “modern” environments?

2 Design Issues

Discuss the following design issues in terms of how distributed systems will have to adapt when scale, similarity,
network, and membership change in “modern” systems.

2.1 Communication Primitives

• Message Passing: Dstributed systems communicate with message passing. Whatcommunication issues were
researchers struggling with in the 1980s? Are the trade-offs different today?

• Many services built around client-server model in which client wanting some service sends a message to the
server and then waits for a reply. This maps nicely to a RemoteProcedure Call (RPC); assume everyone has
read RPC paper in 736. True?

• Interesting example of specialization presented in Case Studies: Amoeba uses unbuffered messages; message
dropped if receiver is not ready to receive; sender retries message later if not acknolwedged. Why might this be
okay between a client and a multi-threaded server? Would this be more or less reasonable in a modern system?

• Error Handling: The ability to handle client and server crashes is importantfor availability and reliability.
What is an idempotent operation? What is attractive about protocols with idempotent operations?

• Implementation Issues: When implementing systems, it has been found to be importantto avoid copies, amor-
tize startup costs of sending small messages, avoid extra round-trips. Any change for modern systems?

1



2.2 Naming and Protection

• Name Servers: Why is a name server needed in a distributed system?

• Architecture: This paper suggests a number of approaches in which a name server can be structured. What are
they? How well will these approaches work in a modern system?

2.3 Resource Management

One of the key challenges to resource management in distributed systems is that nodes do not have up-to-date infor-
mation about the load on remote nodes.

• Processor Allocation: One required task is to allocate nodes to jobs requiring a certain number of processors.
How can hierarchy help with this problem? Why does this work well for a classic distributed system? How well
does this approach work for a modern system?

• Scheduling: When time-sharing communicating processes across multiple nodes, it is important to coschedule
the communicating processes. What happens if processes arenot coscheduled? In a 1980s system, how would
this coordinated context-switch occur? How well will this work in a modern system? Is this as important of a
problem?

• Load Balancing: How processes are allocated to nodes depends upon one’s metrics. Why might one want
communicating processes to be placed on the same node? Why ondifferent nodes? What considerations are
most important currently?

• Heuristic Load Balancing: To place jobs on the least-loaded nodes, one must know the load everywhere. How
can this load information be distributed? Which works in modern systems?

• Heuristic Load Balancing: Why is it so much harder to migrate a running job, compared to perform remote ex-
ecution of a newly creately job? Why would someone prefer migration? Why in modern systems has simplified
migration?

2.4 Fault Tolerance

• What is the difference between reliability and availability?

• Redundancy Techniques: One way to make a system reliable is through redundancy, in which multiple nodes
perform the same computation after ensuring that each has received the same message; if a node crashes, the
others can continue. What are the drawbacks of this approach?

• Redundancy Techniques: A variant of this approach performs a periodic checkpoint ofeach process, records
each message on another node, and then plays back the messages against the checkpoint to recover a failed
process. What are the pros and cons of this approach relativeto the previous one?

• Redundancy Techniques: N-version programming helps avoid software bugs (in addition to hardware faults)
by running different versions of the program on different nodes. Will this work better or worse now?

2.5 Services

• Server Structure: What is the problem with a main loop of a server looking as follows:

while (1) {
getRequest();
doRequest();
sendReply();

}

What is the proposed solution? Will it work for modern systems?

2



• Protection: Why is authentication more complex in a distributed system than on a single machine? How can
encryption be used to make a capability?

• File Service Caching: Caching on clients greatly improves performance, but what problem does it raise? What
are some of the different approaches for (at least partially) fixing this problem?

• File System Reliability: Data can be made more reliable by making muliple copies of it on different disks. For
what type of workloads can this improve performance? For type of workload does it raise new complexities?
How do the issues change for modern systems?

• Time Service: Why is it impossible to have a single global time in a distributed system?

3


