
Building MPI for Multi-Programming Systems using
Implicit Information

Frederick C. Wong1, Andrea C. Arpaci-Dusseau2, and David E. Culler1

1 Computer Science Division, University of California, Berkeley
{fredwong, culler}@CS.Berkeley.EDU

2 Computer Systems Laboratory, Stanford University
dusseau@CS.Stanford.EDU

Abstract. With the growing importance of fast system area networks in the par-
allel community, it is becoming common for message passing programs to run in
multi-programming environments. Competing sequential and parallel jobs can
distort the global coordination of communicating processes. In this paper, we
describe our implementation of MPI using implicit information for global co-
scheduling. Our results show that MPI program performance is, indeed, sensitive
to local scheduling variations. Further, the integration of implicit co-scheduling
with the MPI runtime system achieves robust performance in a multi-program-
ming environment, without compromising performance in dedicated use.

1 Introduction

With the emergence of fast system area networks and low-overhead communication
interfaces [6], it is becoming common for parallel MPI programs to run in cluster envi-
ronments that offer both high performance communication and multi-programming.
Even if only one parallel program is run at a time, these systems utilize independent
operating systems and may schedule sequential processes interleaved with the parallel
program. The core question addressed in this paper is how to design the MPI runtime
system so that realistic applications have good performance that is robust to multi-pro-
gramming.

Several studies have shown that shared address space programs tend to be very sen-
sitive to scheduling and in many cases only perform well when co-scheduled [1]. For-
tunately, this work has also shown an interesting way for programs to co-ordinate their
scheduling implicitly by making simple observations and reacting by either spinning
or sleeping [2].

The first question to answer is whether or not MPI program performance is sensi-
tive to multi-programming. It is commonly believed that message passing should toler-
ate scheduling variations, because the programming model is inherently loosely
coupled and programs typically send large messages infrequently. It is used, after all,
in distributed systems and PVM-style environments. However, local scheduling varia-
tions may cause communication events to become out-of-sync and impact the global

schedule [1].
In this paper, we show that MPI performance is, indeed, sensitive to scheduling; the

common intuition is misplaced. Two or three programs running together may take 10
times longer than running each in sequence; competing with sequential applications
has a similar slowdown. This result is demonstrated on the NAS Parallel Benchmarks
[3] using a fast, robust MPI layer that we have developed over Active Messages [6] on
a large high-speed cluster. We then show that simple techniques for implicit co-sched-
uling can be integrated into the MPI runtime library to make application performance
very robust to multi-programming with little loss of dedicated performance.

This paper is organized as follows. We briefly describe our experimental environ-
ment and our initial MPI implementation in Section 2. In Section 3, we examine the
sensitivity of message passing programs to multi-programming and show the influence
of global uncoordination on application execution time. Section 4 describes our solu-
tion to this problem and gives a detailed description of our MPI implementation using
implicit co-scheduling. Application performance results are discussed in Section 5.

2 Background

This section briefly describes our experimental environment and our initial implemen-
tation of the MPI Standard that serves as a basis for our study of sensitivity to multi-
programming.

2.1 Experimental Environment

The measurements in this paper are performed on the U. C. Berkeley NOW cluster,
which contains 105 UltraSPARC I model 170 workstations connected with 16-port
Myrinet [4] switches. Each UltraSPARC has 512 KB of unified L2 cache and 128 MB
of main memory. Each of the nodes is running Solaris 2.6, Active Messages v5.6 firm-
ware, and GLUnix [7], a parallel execution tool used to start the processes across the
cluster.

2.2 MPI-AM

Our MPI implementation is based on the MPICH [8] (v1.0.12) reference implementa-
tion by realizing the Abstract Device Interface through Active Message operations.
This approach achieves good performance and yet is portable across Active Message
platforms.

Active Messages. Active Messages [6] (AM) is a widely used low-level communica-
tion abstraction that closely resembles the network transactions that underlie modern
parallel programming models. AM constitute request and response transactions which
form restricted remote procedure calls. Our implementation of the Active Messages

ith
d-trip
or-
 KB
 with
s.
 up to

nce is
deed,
ue to
three

 and
API [9] supports a multi-user, multi-programming environment, and yet provides effi-
cient user-level communication access.

Implementation. Our current implementation of MPI uses the eager protocol to trans-
port messages in the abstract device. Each MPI message is transferred by a medium
AM request (up to 8 KB) with communication group and rank, tag, message size, and
other ADI specific information passed as request arguments. Messages larger than
8 KB are fragmented and transferred by multiple Active Messages. Instead of specify-
ing the destination buffer, the sender transfers all message fragments to the destination
process, which dynamically reorders and copies the message fragments into the appro-
priate buffer. A temporary buffer is allocated if the corresponding receive has not been
posted. An MPI message is considered delivered when all associated AM requests are
handled at the receiving node.

Performance in Dedicated Environment. Figure 1a shows the one-way bandwidth of
MPI-AM using Dongarra’s echo test [5]. The one-way bandwidth is calculated w
the reciprocal of the one-way message latency, which is half of the average roun
time. The start-up cost of MPI-AM is 19 (3 above that of the raw AM perf
mance) and the maximum bandwidth achievable is 41 MB/sec. The kink at 8
shows the performance of a single medium request. The increase in bandwidth
message sizes larger than 8 KB is due to streaming multiple medium AM request

Figure 1b shows the speedup of the NAS benchmarks on class A data sizes on
36 dedicated processors in the cluster. Except FT and IS, for which the performa
limited by aggregate bandwidth, the benchmarks obtain near perfect speedup. In
for a few benchmarks, speedup is slightly super-linear for certain machine sizes d
cache effects. To evaluate the impact of multi-program scheduling, we chose
applications (LU, FT, and MG) representing a broad range of communication
computation patterns that we might encounter in real workloads.

Fig. 1. These figures show the micro-benchmark and application performance of MPI-AM in a
dedicated environment. Figure a shows the one-way bandwidth of MPI-AM with message sizes
up to 1 MB. Figure b shows the speedup of the NAS benchmarks (v2.2) on up to 36 processors

(a) (b)

0

5

10

15

20

25

30

35

40

45

1 10 100 1000 10000 100000 1E+06

Message Size (Bytes)

O
ne

-w
ay

 B
an

dw
id

th
 (

M
B

/s
)

8 KB
0

4

8

12

16

20

24

28

32

36

0 4 8 12 16 20 24 28 32 36

Processors

S
pe

ed
up

bt
sp
lu
ep
mg
is
ft

µs µs

3 Sensitivity to Multi-programming

In a multi-programming environment, a local operating system scheduler is responsi-
ble for multiplexing processes onto the physical resources. The execution time of a
sequential process is inversely proportional to the percentage of CPU time allocated,
plus possible context switching overheads. Parallel applications spend additional com-
munication and waiting time in the message passing library. For a parallel application
running in a non-dedicated environment, the waiting time may increase if the pro-
cesses are not scheduled simultaneously. In this section, we examine the sensitivity of
parallel applications to multi-programming. In particular, we investigate the perfor-
mance of the NAS benchmarks when multiple copies of parallel jobs are competing
against each other, and when multiple sequential jobs are competing with a parallel
job.

Figure 2a shows the slowdown of our three benchmarks when multiple copies of the
same program are running. The rest of our experiments are performed on a set of 16
workstations. Slowdown is calculated by dividing the running time of the program in a
multi-programming environment by the execution time of the program run sequen-
tially in a dedicated environment. The slowdown of a workload with two jobs is equal
to one if the workload runs twice as long as a single job in the dedicated environment.
LU has the most significant drop in performance, with a slowdown of 18.2 when three
copies of LU are competing for execution. MG and FT have a slowdown of 6.3 and 1.5
respectively. This shows that the performance of the NAS benchmarks is noticeably
worse when they are not co-scheduled.

Figure 2b shows the effect on the NAS benchmarks of competing with sequential
processes. The benchmark LU has a slowdown of 20.2, FT has a slowdown of 1.7 and
MG has a slowdown of 6.5, when three copies of the sequential job are run. As when
competing with parallel jobs, the performance of the benchmarks drops significantly
when they are actively sharing with sequential jobs.

Fig. 2. These figures show the slowdown of the NAS benchmarks in a multi-programming envi-
ronment. Figure a shows the slowdown of LU, FT, and MG when one copy (Dedicated), two
copies (2-PP) and three copies (3-PP) of the same benchmark are running on the same cluster.
Figure b shows the slowdown of the same benchmarks competing with one copy (1-Seq), two
copies (2-Seq) and three copies (3-Seq) of a sequential job

(b)(a)

1 1 1

6.39

1.43

4.11

19.05

1.63

5.86

20.25

1.65

6.53

0
2
4
6
8

10
12
14
16
18
20
22

LU FT MG

S
lo

w
do

w
n

Dedicated
1-Seq
2-Seq
3-Seq

1 1 1

4.20

1.28

4.18

18.24

1.51

6.27

0
2
4
6
8

10
12
14
16
18
20
22

LU FT MG

S
lo

w
do

w
n

Dedicated
2-PP
3-PP

To further understand the performance impact of a multi-programming environment
on parallel jobs, we profile the execution time of each benchmark. Figure 3 shows the
execution time breakdown of the NAS benchmarks sharing with three copies of a
sequential job. The expected time is the execution time of the benchmark in a dedi-
cated environment. The context switch time is the overhead of context switching to
other processes. The cache penalty is the extra time spent in the memory hierarchy due
to cache misses caused by other processes. The waiting time is the additional time
spent by processes waiting on communication events in the multi-programming envi-
ronment.

Although the context switching cost and cache penalty are substantial, they consti-
tute less than 10 percent of the execution time. The excessive slowdown of LU and
MG is explained by a tremendous increase in waiting on communication events. For
example, only 5 percent of the LU execution time is spent performing useful work
while 85 percent of the time is spent on spin-waiting on message sends and receives.

As shown in these figures, parallel jobs are highly sensitive to global co-scheduling.
The traditional solution to this problem in MPPs is explicit gang scheduling by the
operating system. This is unattractive in general-purpose clusters and mixed work-
loads. In the following sections, we present an elegant solution obtained by modifying
our implementation of MPI to use local information to achieve global co-scheduling.

4 Incorporating Implicit Co-scheduling

The idea of implicit co-scheduling is to use simple observations of communication
events to keep coordinated processes running, and to block the execution of un-coordi-
nated processes so as to release resources for other processes. If the round-trip time of
a message is significantly higher than that expected in a dedicated environment, the
sending process can infer that the receiving process is currently not scheduled. There-
fore, by relinquishing the processor of the sending process, other local processes can
proceed. On the other hand, a timely message response means the sender is probably
scheduled currently, and consequently, the receiving process should remain scheduled.

Fig. 3. This figure shows the execution time breakdown of the NAS benchmarks when three
copies of a sequential process running

0%

20%

40%

60%

80%

100%

LU FT MG

P
er

ce
nt

ag
e

of
 R

un
tim

e
Waiting
Cache Penalty
Context Switch
Expected

Two-phase spin-blocking is a mechanism that embodies these ideas. It consists of
an active spinning phase and a block-on-message phase. In the active spinning phase,
the sender actively polls the network for a reply for a fixed amount of time. In the
block-on-message phase, the caller blocks until an incoming message is received. In
order to keep active processes co-scheduled, the amount of time the sender needs to
spin wait has to be at least the sum of the round-trip time plus the cost of a process
context switch. On the other hand, the receiver should wait for the time of a one-way
message latency under perfect co-scheduling.

We utilize these ideas and modify our MPI-AM runtime library to incorporate the
two-phase spin-block mechanism wherever spin-waiting may occur. The first two
places are trivial; two-phase spin-block is used when the sender is waiting for a reply
from the receiver to confirm the delivery of the message (MPID_Complete_send), and
when the receiver is waiting for the delivery of a message (MPID_Complete_recv).

Spin-waiting can also occur when posting a receive (MPID_Post_recv). Every MPI
receive contains a receive handle that carries the receive information. When posting a
receive by the application, the abstract device needs to ensure that the network device
has not received the corresponding message by checking the unexpected receive
queue. If no match is found, the receive handle is then posted to the expected receive
queue. Otherwise, the message has been received by the network device and an unex-
pected handle is returned. Since large messages are fragmented, it is possible that the
message is in the middle of transmission when the receiving process retrieves the
unexpected handle. Our implementation spin waits until the entire message is buffered.
Thus, the two-phase spin-block mechanism is needed to relinquish the processor if the
sender is not delivering the message fragments fast enough.

Finally, we need to ensure that every layer in the message passing system does not
spin wait. In our Active Messages implementation, an AM request operation might be
blocked due to running out of flow control credits. In order to avoid the spin wait in the
AM layer, MPI-AM keeps a outstanding requests counter. Two-phase spin-block is
used whenever the counter reaches the pre-defined flow control limit of the AM layer.

Fig. 4. Figure a compares the slowdown of the NAS benchmarks with and without implicit co-
scheduling on three copies of the same benchmark. Figure b shows the execution time break-
down of the benchmarks when three copies of a sequential process are time-shared with each of
the benchmarks using implicit co-scheduling

(a) (b)

18.2

1.5

6.3

1.3 0.9 1.2

0

2

4

6

8

10

12

14

16

18

20

LU FT MG

S
lo

w
do

w
n

Without Implicit
With Implicit

0%

20%

40%

60%

80%

100%

LU FT MG

P
er

ce
nt

ag
e

of
 R

un
tim

e

Waiting
Cache Penalty
Context Switch
Expected

5 Results

The extra complexity introduced by implicit co-scheduling to the MPI library only
increases the one-way latency of small message by 1 on the echo test, whereas the
execution time of a single copy of the NAS benchmarks is essentially unchanged.

Figure 4a compares the slowdown of running three copies of the NAS benchmarks
with and without implicit co-scheduling. LU has the most significant improvement,
from a slowdown of 18.2 down to 1.3. Figure 4b shows the execution time breakdown
of the benchmarks when running with three copies of a sequential process. In LU the
waiting time is reduced from 9900 seconds (Figure 3) to 160 seconds, in MG it is
reduced from 180 seconds to 3 seconds and in FT, it is almost completely eliminated.
The two-phase spin-block mechanism effectively reduces the spin-waiting time in the
benchmarks without substantially increasing the context-switch overhead.

Figure 5 repeats the study of Figure 2a using implicit co-scheduling to demonstrate
the scalability with different workload sizes. Both LU and MG experience a moderate
increase in slowdown when multiple copies are run. This increase occurs because both
application perform very frequent fine-grained communications.

FT, on the other hand, experiences a speedup when more copies are run. Because
FT sends relatively large messages, its performance is limited by the aggregate band-
width of the network and processes often spin wait for the messages to drain in and out
of the network. In a dedicated environment, FT spends as much as 25 percent of its
execution time spin waiting in communication events. When multiple copies of FT are
implicitly co-scheduled, a waiting process eventually blocks, allowing other processes
to continue. The total execution time of all processes is therefore reduced by interleav-
ing the computation and communication across competing processes. Speedup is
achieved when the benefit of interleaving outweighs the cost of multi-programming.

6 Conclusion

Previous studies have shown that implicit co-scheduling is useful for building parallel

Fig. 5. This figure shows the slowdown of the NAS benchmarks when one copy (Dedicated),
two copies (2-PP), and three copies (3-PP) of the same benchmark are run

1 1 1

1.24

0.96

1.16

1.31

0.91

1.20

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

LU FT M G

S
lo

w
do

w
n

Dedicated
2-PP
3-PP

µs

applications using a fine-grain shared memory programming model. Our study indi-
cates that loosely coupled message passing programs are highly sensitive to multi-pro-
gramming as well, even on computationally intensive, bulk synchronous programs.
Application slowdown caused by global uncoordination can be as high as 20 times.
Without coordination, processes may waste up to 85 percent of their execution time
spin-waiting for communication.

In this paper, we have presented an implementation of the MPI Standard for a dis-
tributed multi-programming environment. By leveraging implicit information for glo-
bal co-scheduling, we effectively reduce the communication waiting time in the mes-
sage passing applications caused by communication uncoordination. The performance
of message passing applications is improved by as much as a factor of 10, reducing the
application slowdown to 1.5 in the worst case studied. In one case, implicit co-sched-
uling helps a coarse grain message passing application yield better performance by
interleaving communication with computation across parallel processes.

Acknowledgments

We would like to thank Shirley Chiu, Brent Chun, Richard Martin, Alan Mainwaring, and Remzi
Arpaci-Dusseau for their many helpful comments and discussions on this work. This research
has been supported in part by the DARPA (F30602-95-C0014), the NSF (CDA 94-01156), the
DOE (ASCI 2DJB705), and the California MICRO.

Reference

1. R. Arpaci, A. Dusseau, A. Vahdat, L. Liu, T. Anderson, D. Patterson: The Interaction of Par-
allel and Sequential Workloads on a Network of Workstations. In Proceedings of ACM Joint
Intr. Conf. on Measurement and Modeling of Computer Systems, pp. 267-278, May 1995.

2. A. Arpaci-Dusseau, D. Culler, A. Mainwaring: Scheduling with Implicit Information in Dis-
tributed Systems. ACM SIGMETRICS’98/ PERFORMANCE’98.

3. D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, L. Dagum, R. Fatoohi, S. Fineberg,
P. Frederickson, T. Lasinski, R. Schreiber, H. Simon, V. Venkatakrishnan, and S. Weeratunga:
The NAS Parallel Benchmarks. Intr. J. of Supercomputer Applications. 5(3):66-73, 1991.

4. N. Boden, D. Cohen, R. Felderman, A. Kulawik, C. Seitz, J. Seizovic, and W. Su: Myrinet -
A Gigabet-per-Second Local-Area Network. IEEE Micro, 15(1):29-38, Feb. 1995.

5. J. Dongarra and T. Dunnigan: Message Passing Performance of Various Computers. Univer-
sity of Tennessee Technical Report CS-95-299, May 1995.

6. T. von Eicken, D. Culler, S. Goldstein, and K. Schauser: Active Messages: a Mechanism for
Integrated Communication and Computation. In Proc. of the 19th ISCA, 1992, pp.256-266.

7. D. Ghormley, D. Petrou, S. Rodrigues, A. Vahdat, and T. Anderson: GLUnix: A Global Layer
Unix for a Network of Workstations. Software Practice and Experience, 1989.

8. W. Gropp, E. Lusk, N. Doss, and A. Skjellum: A High-Performance, Portable Implementa-
tion of the (MPI) Message Passing Interface Standard. Parallel Computing 22(6):789-828,
Sept. 1996.

9. A. Mainwaring: Active Message Application Programming Interface and Communication
Subsystem Organization. University of California at Berkeley, T.R. UCB CSD-96-918, 1996.

	Building MPI for Multi-Programming Systems using Implicit Information
	1 Introduction
	2 Background
	2.1 Experimental Environment
	2.2 MPI-AM

	3 Sensitivity to Multi-programming
	4 Incorporating Implicit Co-scheduling
	5 Results
	6 Conclusion
	Acknowledgments
	Reference

