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As systems become more complex, are implemented by mordogeve, and contain more lines of
code, it becomes increasingly less likely that any singlsgecan understand how a system behaves. Un-
derstanding how our computer systems behave is of utmosirtamre for developers, administrators, and
users — all must be able to identify when a system is not bebas expected. The challenge for developers
is even higher: large new software systems are not built Boratch, but instead leverage existing software.
Therefore, developers must understand the behavior of #vasting layers in great detail.

My research at the University of Wisconsin addresses bathptioblems of understanding complex
systems and of building layered systems. My thesis is tlesiproblems can be simplified by treating each
layer of the system asgray box[1]. In a gray-box system, one starts with basic knowledgleasi a layer
is likely to be implemented; one then builds successiveiiyed models of the layer by forming hypotheses
and testing them with observations of how the layer resptmdsputs at run-time.

My research on gray-box systems can be roughly divided wtodreas. First, we have developed
a range offingerprinting tools to automatically infer and characterize the behawfosome subsystem.
Second, we have shown how a system can use gray-box knowtieddaptits behavior to that of existing
layers or tocontrol the behavior of existing layers, and thus improve perforreareliability, and security.

| have been investigating layered systems primarily in twmdins. The first domain consists of user-
level processes interacting with commodity operatingesyst in this case, we have assumed that the user
processes view the OS as the gray box [1, 2, 3]. The secondidamasists of the file system interacting
with the storage system, whether a RAID or a single disk; is ttomain, we have investigated both the
file system viewing the storage system as a gray box [4, 5] dsaw¢he storage system viewing the file
system as a gray box [6, 7, 8, 9]. This last instance is the@mwvient in which we have performed our most
in-depth research; we refer to this type of storage systeasasnantically-smart disk system (SDS).

All of this research has been performed in collaboratiorhwaily colleague Professor Remzi Arpaci-
Dusseau. When working together, we have intentionally naaked who was the primary contributor to any
particular research project; | believe this has helped usetthe most productive and creative. However,
each of does view our joint research from a different persgecl tend to focus on the contributions that
are required to advance the understanding of gray-boxmgst@hereas Remzi is more interested in solving
real problems by improving the performance, reliabilitydaecurity of file and storage systems. But, even
this vague description of our roles is not completely adeurave each have interests in both areas, and in
some projects, our interests are completely reversed.

In this document, | summarize my research on understandidgbailding layered systems. | first
describe our work developing techniques to automaticafigricomplex system behavior. | then summarize
our results from using gray-box knowledge to build new gyste

Fingerprinting Existing Systems

| have been developing techniques for automatically charamg, or fingerprinting, the behavior of soft-
ware systems. The fingerprinting software starts with héglel knowledge of how the system is likely to
be implemented, and then constructs probes and observessililéng outputs from that componeetd,



the time required for a particular request). The fingerprgitode can successively refine its hypotheses by
performing increasingly specific tests. Fingerprintindgpkeone to inferwhythe system is performing as it

is and to classify the policies the system is using. For exanfmgerprinting could identify that a RAID
system is using an LRU replacement policy for its cache. éfipignting can also be used to characterize
system behavior according to metrics other than perforeéng, reliability).

We have developed innovative, yet practical, techniquesirigerprinting a variety of systems. These
techniques can be roughly divided into three categoriesaréasing sophistication: those that measure time
for probes in order to make inferences, those that make \wdits@n from multiple vantage points, and those
that also manipulate the behavior of the system. | discussetthree classes fingerprinting techniques in
more detail.

e Insert probes. Our first set of fingerprinting tools infer properties by gextimg request probes from
a user-level process and then measuring the time for thafegto complete. For example, we first
developedDust, which infers OS buffer cache replacement policies [2]. cHjmally, Dust identifies
how initial access order, recency of access, frequency eésa; and long-term history determine
which blocks are replaced from the buffer cache. We have@sstructedshear which infers key
properties of RAIDs [4], such as the number of disks, chualk,sievel of redundancy, and layout
scheme. By accessing sets of disk blocks and timing thosesses, Shear can detect which blocks
are located on the same disks and thus infer basic propefti@eck layout; intuitively, sets of reads
that are “slow” are assumed to be on the same disk, while $e¢sds that are “fast” are assumed to
be on different disks.

e Observe from multiple vantage points. Our second set of fingerprinting tools make observations
from multiple vantage points. In these cases, we have finggep different aspects of local file
systems. First, to identify the data structures used byl kileasystems, we implementeOF [6].
The EOF process runs at user-level and works in concert vadmaantically-smart disk (SDS); while
EOF generates workloads that are expected to modify spéeifis of data structure(g, file size,
data pointers, or modification times), the SDS watches tevbieh blocks are written and which byte
ranges change. Thus, the SDS can infer which blocks and &ytgs correspond to which file system
structures. Second, we have develofamantic Block Analysis (SBR)Y] to infer certain policies
of file systems, in particular, the events that trigger analing file system to flush data to disk.g,
when a timer expires or when the journal becomes full). Imlwatses, we are able to infer properties
of the layer in the middlei ., the file system) by combining observations from the uppgzrid.e.,
the user workload) and the lower layee(, the storage system).

e Modify interactions. Our third class of fingerprinting tools not only observe tlgetem under test,
but modify its behavior as well. First, we have fingerprintieel communication protocols and policies
of the EMC Centera storage cluster [11]. When analyzingduister, we not only observe the network
and disk traffic, but welelayspecific network packets as well; by observing which subsetpackets
are also delayed, we are able to definitively infer dependeracross messages. As in our previous
work, we are able also to infer its caching, load-balancimgg replication policies. Second, we
have fingerprinted the failure-policies of local file systgehy failing disk read and write operations.
Previous work analyzing how file systems handle disk fafiunas failed disk blocks at random;
however, if the fault injector has gray-box knowledge of fiestem data structures and operations,
then it can fail specific blocks at specific times, drasticeddducing the search space [12, 13].

Fingerprinting tools are useful and practical because #rm@ble users and administrators to under-
stand the actual systems that they are using. We have fingeighi variety of commodity systems, from
the buffer replacement policies in NetBSD, Linux, Solaaad HPUX, to the file systems of Linux ext2,
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ext3, ReiserFS, JFS, NetBSD FFS, and Windows NTFS. In masgscaur tools have revealed interesting
problems within the systems. For example, Shear revealdhb RAID-5 mode of a common hardware
controller employs a non-optimal left-asymmetric paritggement [4]. Our SBA and failure policy analysis
isolated numerous bugs and illogical inconsistenciesversgfile systems [10, 12, 13].

Our research on fingerprinting across these domains haaleeveommon principles. For example,
we have found it useful to ensure that the system under tegidrating in its steady-state regime before
observing its outputs. We have found statistical techricare needed to deliver automated and reliable
detection, yet graphical depictions are useful for usemstéspret the results.

Building New Systems

Due to the amount of time, money, and effort required to bailthrge software system, most systems
leverage some amount of existing softwageg( the OS).. Unfortunately, there are complications when one
leverages existing code that cannot be modified: the boda@ee may not have the desired behavior in
some environments. In this situation, one can use gray-bowledge to better operate with the existing
code. Specifically, one can eithadaptthe behavior of new layer to that of the existing layers or cae
subtly control the behavior of the existing layers.

Adaptation

When a new layer has gray-box knowledge of how other exiséipgrs behave, the new layer can adapt its
own behavior appropriately. In our investigations, we himwend that the primary challenge is to infer the
current internal statef the gray-box layerd.g, not just the replacement policy of an internal cache, kit th
specific contents of that cache).

The techniques we have developed for inferring interndkedtll into three categories, increasing in
complexity as one’s observations and interactions withgitaey-box layer decrease. In the first category,
one is able to interact with the gray-box layer by sendingabe operations; in the second group, one is not
able to probe the gray-box layer, but one can observe al affituts; in the final group, one is able to only
observe a subset of the outputs from the gray-box layer. dribesthese three categories of techniques in
more detail.

e Insert probes. The simplest case for inferring internal state occurs whem is able to probe the
gray-box layer by sending it request. In our first work in gkax systems, we investigated how a
user-level process can use gray-box knowledge of the OSajut &g own behavior [1]. In these case
studies, the user-level process begins with high-levelraptions about how the OS behaves and then
measures the amount of time for simple probes into the &g (eading a particular block from a
file or accessing another page of memory). In this work, wealeatrated that an application can
infer whether a particular file is currently cached, whetlgroup of files are located near each other
on disk, and the amount of free memory; armed with this st#tamation, the application can then
modify the order of the files or the amount of data that it asess

e Observe all inputs: When one is able to observe all of the inputs to a gray-boxrjaiien one can
simulate (or model) the internal behavior of that layer tteints current internal state. We have
developed efficienbn-line simulationdhoth to infer current state and to predict how the layer will
react to future requests. We have applied on-line simulatioa number of scenarios. First, we
have shown how a web server (or other memory-intensive Ggifmn) can simulate the file cache
replacement algorithm of the OS in order to predict the austef the file cache; the web server can
then service requests which are expected to hit in the fileeclicst, improving both average response



time and throughput [2]. Second, we have implemented an €iSstheduler that simulates the disk
so that it can better group its requests [5].

e Observepartial outputs: The most complex situation occurs when one is able to seesontg of the
outputs from a gray-box layer. By combining detailed knalgle of how the gray-box layer behaves
with these partial observations, one is able to infer thadyilstate of the gray-box layer. In this context,
we have investigated functionality placed in a semantiesthart disk system (SDS) [6, 7, 8, 9]. For
one case study, we developed X-RAY, an exclusive RAID aremghing mechanism for an SDS [7].
X-RAY infers the approximate contents of the file system ealoi observing when the file system
requests a file from the disk and when the access and updade ¢ihiiles are changed. In a second
case study, we developed D-GRAID, a gracefully-degradingy guickly-recovering RAID storage
array [14]. One way in which D-GRAID achieves high availéhilis by placing logically-related
blocks €.g, the meta-data and data blocks of one file) within a singlk. disGRAID infers which
blocks belong to a particular file by observing when specifitdé and pointers within blocks are
updated on disk. Finally, for a third SDS case study, we egpldow one can build secure-delete
functionality within a disk [8]. In this work, we show how thigeness of file system blocks can be
inferred by the storage system.

While performing this research, we have addressed a nunilzmecarching challenges. For example,
when inserting probes, a primary challenge is to perfornb@sahat do not change the state of the system.
When performing on-line simulation, one of primary chafjes is to develop a model of the gray-box layer
that is accurate enough to predict internal state, whilagbeimple enough to be used efficiently on-line.
Finally, the major challenge we have addressed is dealitiy agynchrony within the gray-box layer; that
is, the gray-box layer may buffer or reorder its outputshsihat the outputs do not match the current state
of the layer.

Control

When building a layered system, if the existing layers doaxbiibit the desired behavior, gray-box knowl-
edge can be used in a more radical way: the system can irdiraodify the behavior of existing layers
without changing their implementation. As an example, mBrsthe case where a gray-box layer (such as
the OS) implements a page replacement policy that is namapfor the user workloade(g, LRU). The
user process can change the OS replacement policy, withanging the OS code, if it knows the internal
state of the OSife., which pages are likely to be evicted next) and if it can thereas the pages that it does
not want evicted, thereby encouraging the OS to keep theidergs

We have implemented a few case studies where one contrgi®liog of an underlying gray-box layer.
For example, we have developed a user-level service thaigelkahow the file system places files and
directories on disk by selectively naming, inserting, arteting files [3]. However, our experience has
shown that, given the detailed gray-box knowledge needesipport this type of control, it is useful to
expand interfaces slightly to expose more internal infdaioma[15, 16]. In our work, we have focused on
how to make minimal changes to interfaces, under the théatyone should leverage the existing code base
to the fullest extent possible.

One context in which we have explored the benefits of expasioig internal state is within anfoker-
nel, an OS which has been extended to export key abstractiohs3&bvices built on either a gray-box OS
or an infokernel control the OS in the same manner: by maatifghe inputs to the OS and understanding
how those new inputs change the internal state and the fbalravior of the OS. However, whereas a ser-
vice built on a gray-box system must perform work to infergtee of the OS, a service on an infokernel can
obtain this information directly. On top of an infokernelewave explored four case studies; we have shown



how user-level processes can change the default file caplaeenent algorithm, the file layout policy, the
disk scheduling algorithm, and the TCP congestion contgaréhm.

One of the additional contributions of the infokernel reshas in identifying key abstractions that can
be exported with little complexity from the OS, yet suppobraad range of more precise user-level control.
For example, our case studies have shown tipaitcgitized listis a useful general abstraction for expressing
the interesting internal state of the OS and the decisicaustiie OS will make. We have found that only a
few hundred lines of OS code are usually required to expegelabstractions and that the abstractions are
sufficiently general to capture the policies of differeneming systems.

Exploring how gray-box systems can be constructed withlabeg no changes to existing layers makes
it easier to then identify the small changes to interfacas gheatly improve system functionality. We have
explored the issue of how interfaces should be changed imietywaf contexts. For example, we have
investigated the ability to control TCP further by develapicTCP, which allows users to not only observe
the internal state of TCP, but to also set some TCP variahlessiafe fashion [17]. With this very small
extension to TCP Reno, we can implement numerous variant€ef at user level, such as TCP Vegas,
TCP Nice, the Congestion Manager (CM), robust reorderiffgient fast retransmit, and TCP Eifel. We
have also explored minimal changes to the interface betfileeand storage systems in order to improve
performance, reliability, and security [16, 18, 19, 8].

Finally, our experience with gray-box systems has stretisecheed for models of system behavior.
Complex systems make assumptions about the behavior oftiimystems, beyond those specified by their
interfaces; however, for systems to operate correcthsetessumptions must be explicitly stated. As a
starting point, we have developed a logical framework fodelimg the interaction of a file system with the
storage system [20]. This model defines the assumptionghbattorage system can make about the the
file system and can help ensure that on-disk data structuedsept consistent. | believe the value of such
models will increase as systems continue to increase in lexmyp
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