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As systems become more complex, are implemented by more developers, and contain more lines of
code, it becomes increasingly less likely that any single person can understand how a system behaves. Un-
derstanding how our computer systems behave is of utmost importance for developers, administrators, and
users – all must be able to identify when a system is not behaving as expected. The challenge for developers
is even higher: large new software systems are not built fromscratch, but instead leverage existing software.
Therefore, developers must understand the behavior of these existing layers in great detail.

My research at the University of Wisconsin addresses both the problems of understanding complex
systems and of building layered systems. My thesis is that these problems can be simplified by treating each
layer of the system as agray box[1]. In a gray-box system, one starts with basic knowledge ofhow a layer
is likely to be implemented; one then builds successively refined models of the layer by forming hypotheses
and testing them with observations of how the layer respondsto inputs at run-time.

My research on gray-box systems can be roughly divided into two areas. First, we have developed
a range offingerprinting tools to automatically infer and characterize the behaviorof some subsystem.
Second, we have shown how a system can use gray-box knowledgeto adaptits behavior to that of existing
layers or tocontrol the behavior of existing layers, and thus improve performance, reliability, and security.

I have been investigating layered systems primarily in two domains. The first domain consists of user-
level processes interacting with commodity operating systems; in this case, we have assumed that the user
processes view the OS as the gray box [1, 2, 3]. The second domain consists of the file system interacting
with the storage system, whether a RAID or a single disk; in this domain, we have investigated both the
file system viewing the storage system as a gray box [4, 5] as well as the storage system viewing the file
system as a gray box [6, 7, 8, 9]. This last instance is the environment in which we have performed our most
in-depth research; we refer to this type of storage system asa semantically-smart disk system (SDS).

All of this research has been performed in collaboration with my colleague Professor Remzi Arpaci-
Dusseau. When working together, we have intentionally not tracked who was the primary contributor to any
particular research project; I believe this has helped us tobe the most productive and creative. However,
each of does view our joint research from a different perspective. I tend to focus on the contributions that
are required to advance the understanding of gray-box systems, whereas Remzi is more interested in solving
real problems by improving the performance, reliability, and security of file and storage systems. But, even
this vague description of our roles is not completely accurate: we each have interests in both areas, and in
some projects, our interests are completely reversed.

In this document, I summarize my research on understanding and building layered systems. I first
describe our work developing techniques to automatically infer complex system behavior. I then summarize
our results from using gray-box knowledge to build new systems.

Fingerprinting Existing Systems

I have been developing techniques for automatically characterizing, or fingerprinting, the behavior of soft-
ware systems. The fingerprinting software starts with high-level knowledge of how the system is likely to
be implemented, and then constructs probes and observes theresulting outputs from that component (e.g.,



the time required for a particular request). The fingerprinting code can successively refine its hypotheses by
performing increasingly specific tests. Fingerprinting helps one to inferwhy the system is performing as it
is and to classify the policies the system is using. For example, fingerprinting could identify that a RAID
system is using an LRU replacement policy for its cache. Fingerprinting can also be used to characterize
system behavior according to metrics other than performance (e.g., reliability).

We have developed innovative, yet practical, techniques for fingerprinting a variety of systems. These
techniques can be roughly divided into three categories of increasing sophistication: those that measure time
for probes in order to make inferences, those that make observation from multiple vantage points, and those
that also manipulate the behavior of the system. I discuss these three classes fingerprinting techniques in
more detail.

• Insert probes: Our first set of fingerprinting tools infer properties by generating request probes from
a user-level process and then measuring the time for those probes to complete. For example, we first
developedDust, which infers OS buffer cache replacement policies [2]. Specifically, Dust identifies
how initial access order, recency of access, frequency of access, and long-term history determine
which blocks are replaced from the buffer cache. We have alsoconstructedShear, which infers key
properties of RAIDs [4], such as the number of disks, chunk size, level of redundancy, and layout
scheme. By accessing sets of disk blocks and timing those accesses, Shear can detect which blocks
are located on the same disks and thus infer basic propertiesof block layout; intuitively, sets of reads
that are “slow” are assumed to be on the same disk, while sets of reads that are “fast” are assumed to
be on different disks.

• Observe from multiple vantage points: Our second set of fingerprinting tools make observations
from multiple vantage points. In these cases, we have fingerprinted different aspects of local file
systems. First, to identify the data structures used by local file systems, we implementedEOF [6].
The EOF process runs at user-level and works in concert with asemantically-smart disk (SDS); while
EOF generates workloads that are expected to modify specificfields of data structures (e.g., file size,
data pointers, or modification times), the SDS watches to seewhich blocks are written and which byte
ranges change. Thus, the SDS can infer which blocks and byte ranges correspond to which file system
structures. Second, we have developedSemantic Block Analysis (SBA)[10] to infer certain policies
of file systems, in particular, the events that trigger a journaling file system to flush data to disk (e.g.,
when a timer expires or when the journal becomes full). In both cases, we are able to infer properties
of the layer in the middle (i.e., the file system) by combining observations from the upper layer (i.e.,
the user workload) and the lower layer (i.e., the storage system).

• Modify interactions: Our third class of fingerprinting tools not only observe the system under test,
but modify its behavior as well. First, we have fingerprintedthe communication protocols and policies
of the EMC Centera storage cluster [11]. When analyzing thiscluster, we not only observe the network
and disk traffic, but wedelayspecific network packets as well; by observing which subsequent packets
are also delayed, we are able to definitively infer dependencies across messages. As in our previous
work, we are able also to infer its caching, load-balancing,and replication policies. Second, we
have fingerprinted the failure-policies of local file systems by failing disk read and write operations.
Previous work analyzing how file systems handle disk failures has failed disk blocks at random;
however, if the fault injector has gray-box knowledge of filesystem data structures and operations,
then it can fail specific blocks at specific times, drastically reducing the search space [12, 13].

Fingerprinting tools are useful and practical because theyenable users and administrators to under-
stand the actual systems that they are using. We have fingerprinted a variety of commodity systems, from
the buffer replacement policies in NetBSD, Linux, Solaris,and HPUX, to the file systems of Linux ext2,
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ext3, ReiserFS, JFS, NetBSD FFS, and Windows NTFS. In many cases, our tools have revealed interesting
problems within the systems. For example, Shear revealed that the RAID-5 mode of a common hardware
controller employs a non-optimal left-asymmetric parity placement [4]. Our SBA and failure policy analysis
isolated numerous bugs and illogical inconsistencies in several file systems [10, 12, 13].

Our research on fingerprinting across these domains has revealed common principles. For example,
we have found it useful to ensure that the system under test isoperating in its steady-state regime before
observing its outputs. We have found statistical techniques are needed to deliver automated and reliable
detection, yet graphical depictions are useful for users tointerpret the results.

Building New Systems

Due to the amount of time, money, and effort required to builda large software system, most systems
leverage some amount of existing software (e.g., the OS).. Unfortunately, there are complications when one
leverages existing code that cannot be modified: the borrowed code may not have the desired behavior in
some environments. In this situation, one can use gray-box knowledge to better operate with the existing
code. Specifically, one can eitheradapt the behavior of new layer to that of the existing layers or onecan
subtlycontrol the behavior of the existing layers.

Adaptation

When a new layer has gray-box knowledge of how other existinglayers behave, the new layer can adapt its
own behavior appropriately. In our investigations, we havefound that the primary challenge is to infer the
current internal stateof the gray-box layer (e.g., not just the replacement policy of an internal cache, but the
specific contents of that cache).

The techniques we have developed for inferring internal state fall into three categories, increasing in
complexity as one’s observations and interactions with thegray-box layer decrease. In the first category,
one is able to interact with the gray-box layer by sending it probe operations; in the second group, one is not
able to probe the gray-box layer, but one can observe all of its inputs; in the final group, one is able to only
observe a subset of the outputs from the gray-box layer. I describe these three categories of techniques in
more detail.

• Insert probes: The simplest case for inferring internal state occurs when one is able to probe the
gray-box layer by sending it request. In our first work in gray-box systems, we investigated how a
user-level process can use gray-box knowledge of the OS to adapt its own behavior [1]. In these case
studies, the user-level process begins with high-level assumptions about how the OS behaves and then
measures the amount of time for simple probes into the OS (e.g., reading a particular block from a
file or accessing another page of memory). In this work, we demonstrated that an application can
infer whether a particular file is currently cached, whethera group of files are located near each other
on disk, and the amount of free memory; armed with this state information, the application can then
modify the order of the files or the amount of data that it accesses.

• Observe all inputs: When one is able to observe all of the inputs to a gray-box layer, then one can
simulate (or model) the internal behavior of that layer to infer its current internal state. We have
developed efficienton-line simulationsboth to infer current state and to predict how the layer will
react to future requests. We have applied on-line simulation in a number of scenarios. First, we
have shown how a web server (or other memory-intensive application) can simulate the file cache
replacement algorithm of the OS in order to predict the contents of the file cache; the web server can
then service requests which are expected to hit in the file cache first, improving both average response
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time and throughput [2]. Second, we have implemented an OS disk scheduler that simulates the disk
so that it can better group its requests [5].

• Observe partial outputs: The most complex situation occurs when one is able to see onlysome of the
outputs from a gray-box layer. By combining detailed knowledge of how the gray-box layer behaves
with these partial observations, one is able to infer the likely state of the gray-box layer. In this context,
we have investigated functionality placed in a semantically-smart disk system (SDS) [6, 7, 8, 9]. For
one case study, we developed X-RAY, an exclusive RAID array caching mechanism for an SDS [7].
X-RAY infers the approximate contents of the file system cache by observing when the file system
requests a file from the disk and when the access and update times of files are changed. In a second
case study, we developed D-GRAID, a gracefully-degrading and quickly-recovering RAID storage
array [14]. One way in which D-GRAID achieves high availability is by placing logically-related
blocks (e.g., the meta-data and data blocks of one file) within a single disk. D-GRAID infers which
blocks belong to a particular file by observing when specific fields and pointers within blocks are
updated on disk. Finally, for a third SDS case study, we explored how one can build secure-delete
functionality within a disk [8]. In this work, we show how theliveness of file system blocks can be
inferred by the storage system.

While performing this research, we have addressed a number of overarching challenges. For example,
when inserting probes, a primary challenge is to perform probes that do not change the state of the system.
When performing on-line simulation, one of primary challenges is to develop a model of the gray-box layer
that is accurate enough to predict internal state, while being simple enough to be used efficiently on-line.
Finally, the major challenge we have addressed is dealing with asynchrony within the gray-box layer; that
is, the gray-box layer may buffer or reorder its outputs, such that the outputs do not match the current state
of the layer.

Control

When building a layered system, if the existing layers do notexhibit the desired behavior, gray-box knowl-
edge can be used in a more radical way: the system can indirectly modify the behavior of existing layers
without changing their implementation. As an example, consider the case where a gray-box layer (such as
the OS) implements a page replacement policy that is non-optimal for the user workload (e.g., LRU). The
user process can change the OS replacement policy, without changing the OS code, if it knows the internal
state of the OS (i.e., which pages are likely to be evicted next) and if it can then access the pages that it does
not want evicted, thereby encouraging the OS to keep them resident.

We have implemented a few case studies where one controls thepolicy of an underlying gray-box layer.
For example, we have developed a user-level service that changes how the file system places files and
directories on disk by selectively naming, inserting, and deleting files [3]. However, our experience has
shown that, given the detailed gray-box knowledge needed tosupport this type of control, it is useful to
expand interfaces slightly to expose more internal information [15, 16]. In our work, we have focused on
how to make minimal changes to interfaces, under the theory that one should leverage the existing code base
to the fullest extent possible.

One context in which we have explored the benefits of exposingmore internal state is within aninfoker-
nel, an OS which has been extended to export key abstractions [15]. Services built on either a gray-box OS
or an infokernel control the OS in the same manner: by modifying the inputs to the OS and understanding
how those new inputs change the internal state and the futurebehavior of the OS. However, whereas a ser-
vice built on a gray-box system must perform work to infer thestate of the OS, a service on an infokernel can
obtain this information directly. On top of an infokernel, we have explored four case studies; we have shown
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how user-level processes can change the default file cache replacement algorithm, the file layout policy, the
disk scheduling algorithm, and the TCP congestion control algorithm.

One of the additional contributions of the infokernel research is in identifying key abstractions that can
be exported with little complexity from the OS, yet support abroad range of more precise user-level control.
For example, our case studies have shown that aprioritized list is a useful general abstraction for expressing
the interesting internal state of the OS and the decisions that the OS will make. We have found that only a
few hundred lines of OS code are usually required to export these abstractions and that the abstractions are
sufficiently general to capture the policies of different operating systems.

Exploring how gray-box systems can be constructed with absolutely no changes to existing layers makes
it easier to then identify the small changes to interfaces that greatly improve system functionality. We have
explored the issue of how interfaces should be changed in a variety of contexts. For example, we have
investigated the ability to control TCP further by developing icTCP, which allows users to not only observe
the internal state of TCP, but to also set some TCP variables in a safe fashion [17]. With this very small
extension to TCP Reno, we can implement numerous variants ofTCP at user level, such as TCP Vegas,
TCP Nice, the Congestion Manager (CM), robust reordering, efficient fast retransmit, and TCP Eifel. We
have also explored minimal changes to the interface betweenfile and storage systems in order to improve
performance, reliability, and security [16, 18, 19, 8].

Finally, our experience with gray-box systems has stressedthe need for models of system behavior.
Complex systems make assumptions about the behavior of their subsystems, beyond those specified by their
interfaces; however, for systems to operate correctly, these assumptions must be explicitly stated. As a
starting point, we have developed a logical framework for modeling the interaction of a file system with the
storage system [20]. This model defines the assumptions thatthe storage system can make about the the
file system and can help ensure that on-disk data structures are kept consistent. I believe the value of such
models will increase as systems continue to increase in complexity.
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