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Abstract. In this paper we consider the problem of computing the 3D shape of an
unknown, arbitrarily-shaped scene from multiple photographs taken at known but
arbitrarily-distributed viewpoints. By studying the equivalence class of all 3D shapes
that reproduce the input photographs, we prove the existence of a special member
of this class, the photo hull, that (1) can be computed directly from photographs
of the scene, and (2) subsumes all other members of this class. We then give a
provably-correct algorithm, called Space Carving, for computing this shape and
present experimental results on complex real-world scenes. The approach is designed
to (1) capture photorealistic shapes that accurately model scene appearance from
a wide range of viewpoints, and (2) account for the complex interactions between
occlusion, parallax, shading, and their view-dependent e�ects on scene-appearance.
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1. Introduction

A fundamental problem in computer vision is reconstructing the shape
of a complex 3D scene from multiple photographs. While current tech-
niques work well under controlled conditions (e.g., small stereo base-
lines (Okutomi and Kanade, 1993), active viewpoint control (Kutu-
lakos and Dyer, 1994), spatial and temporal smoothness (Poggio et al.,
1985; Bolles et al., 1987; Katayama et al., 1995), or scenes containing
curved lines (Bascle and Deriche, 1993), planes (Pritchett and Zisser-
man, 1998), or texture-less surfaces (Cipolla and Blake, 1992; Vail-
lant and Faugeras, 1992; Laurentini, 1994; Szeliski and Weiss, 1994;
Kutulakos and Dyer, 1995)), very little is known about scene recon-
struction under general conditions. In particular, in the absence of
a priori geometric information, what can we infer about the struc-
ture of an unknown scene from N arbitrarily positioned cameras at
known viewpoints? Answering this question has many implications for
reconstructing real objects and environments, which tend to be non-
smooth, exhibit signi�cant occlusions, and may contain both textured
and texture-less surface regions (Figure 1).
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2 Kutulakos and Seitz

In this paper, we develop a theory for reconstructing 3D scenes from
photographs by formulating shape recovery as a constraint satisfaction
problem. We show that any set of photographs of a rigid scene de�nes a
collection of picture constraints that are satis�ed by every scene project-
ing to those photographs. Furthermore, we characterize the set of all 3D
shapes that satisfy these constraints and use the underlying theory to
design a practical reconstruction algorithm, called Space Carving, that
applies to fully-general shapes and camera con�gurations. In particular,
we address three questions:

� Given N input photographs, can we characterize the set of all
photo-consistent shapes, i.e., shapes that reproduce the input pho-
tographs?

� Is it possible to compute a shape from this set and if so, what is
the algorithm?

� What is the relationship of the computed shape to all other photo-
consistent shapes?

Our goal is to study the N -view shape recovery problem in the
general case where no constraints are placed upon the scene's shape
or the viewpoints of the input photographs. In particular, we address
the above questions for the case when (1) no constraints are imposed
on scene geometry or topology, (2) no constraints are imposed on the
positions of the input cameras, (3) no information is available about
the existence of speci�c image features in the input photographs (e.g.,
edges, points, lines, contours, texture, or color), and (4) no a priori
correspondence information is available. Unfortunately, even though
several algorithms have been proposed for recovering shape from mul-
tiple views that work under some of these conditions (e.g., work on
stereo (Belhumeur, 1996; Cox et al., 1996; Stewart, 1995)), very little
is currently known about how to answer the above questions, and even
less so about how to answer them in this general case.

At the heart of our work is the observation that these questions
become tractable when scene radiance belongs to a general class of radi-
ance functions we call locally computable. This class characterizes scenes
for which global illumination e�ects such as shadows, transparency and
inter-reections can be ignored, and is su�ciently general to include
scenes with parameterized radiance models (e.g., Lambertian, Phong
(Foley et al., 1990), Torrance-Sparrow (Torrance and Sparrow, 1967)).
Using this observation as a starting point, we show how to compute,
from N photographs of an unknown scene, a maximal shape called the
photo hull that encloses the set of all photo-consistent reconstructions.
The only requirements are that (1) the viewpoint of each photograph is
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known in a common 3D world reference frame (Euclidean, a�ne (Koen-
derink and van Doorn, 1991), or projective (Mundy and Zisserman,
1992)), and (2) scene radiance follows a known, locally-computable ra-
diance function. Experimental results demonstrating our method's per-
formance are given for both real and simulated geometrically-complex
scenes.

Central to our analysis is the realization that parallax, occlusion,
and scene radiance all contribute to a photograph's dependence on
viewpoint. Since our notion of photo-consistency implicitly ensures
that all of these 3D shape cues are taken into account in the recov-
ery process, our approach is related to work on stereo (Okutomi and
Kanade, 1993; Cox et al., 1996; Ho� and Ahuja, 1989), shape-from-
contour (Cipolla and Blake, 1992; Vaillant and Faugeras, 1992; Szeliski,
1993), as well as shape-from-shading (Epstein et al., 1996; Belhumeur
and Kriegman, 1996; Woodham et al., 1991). These approaches rely
on studying a single 3D shape cue under the assumptions that other
sources of variability can be safely ignored, and that the input pho-
tographs contain features relevant to that cue (Bolles and Cain, 1982).1

Unfortunately, these approaches cannot be easily generalized to attack
the N -view reconstruction problem for arbitrary 3D scenes because
neither assumption holds true in general. Implicit in this previous work
is the view that untangling parallax, self-occlusion and shading e�ects
in N arbitrary photographs of a scene leads to a problem that is either
under-constrained or intractable. Here we challenge this view by show-
ing that shape recovery from N arbitrary photographs of an unknown
scene is not only a tractable problem but has a simple solution as well.

To our knowledge, no previous theoretical work has studied the
equivalence class of solutions to the general N -view reconstruction
problem or provably-correct algorithms for computing them. The Space
Carving Algorithm that results from our analysis, however, is related
to other 3D scene-space stereo algorithms that have been recently
proposed (Fua and Leclerc, 1995; Collins, 1996; Seitz and Dyer, 1999;
Seitz and Kutulakos, 1998; Zitnick and Webb, 1996; Narayanan et al.,
1998; Szeliski and Golland, 1998; Roy and Cox, 1998). Of these, most
closely related are mesh-based (Fua and Leclerc, 1995) and level-set
(Faugeras and Keriven, 1998) algorithms, as well as methods that sweep
a plane or other manifold through a discretized scene space (Collins,
1996; Seitz and Dyer, 1999; Seitz and Kutulakos, 1998; Szeliski and
Golland, 1998; Langer and Zucker, 1994). While the algorithms in
(Faugeras and Keriven, 1998; Fua and Leclerc, 1995) generate high-
quality reconstructions and perform well in the presence of occlusions,
their use of regularization techniques penalizes complex surfaces and
shapes. Even more importantly, no formal study has been undertaken
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to establish their validity for recovering arbitrarily-shaped scenes from
unconstrained camera con�gurations (e.g., the one shown in Figure
1a). In contrast, our Space Carving Algorithm is provably correct and
has no regularization biases. Even though space-sweep approaches have
many attractive properties, existing algorithms (Collins, 1996; Seitz
and Dyer, 1999; Seitz and Kutulakos, 1998; Szeliski and Golland, 1998)
are not fully general i.e., they rely on the presence of speci�c image
features such as edges and hence generate only sparse reconstructions
(Collins, 1996), or they place strong constraints on the input view-
points relative to the scene (Seitz and Dyer, 1999; Seitz and Kutulakos,
1998). Unlike all previous methods, Space Carving guarantees complete
reconstruction in the general case.

Our approach o�ers six main contributions over the existing state
of the art:

1. It introduces an algorithm-independent analysis of the shape re-
covery problem from N arbitrary photographs, making explicit the
assumptions required for solving it as well as the ambiguities intrin-
sic to the problem. This analysis not only extends previous work on
reconstruction but also puts forth a concise geometrical framework
for analyzing the general properties of recently-proposed scene-
space stereo techniques (Fua and Leclerc, 1995; Collins, 1996; Seitz
and Dyer, 1999; Seitz and Kutulakos, 1998; Zitnick and Webb,
1996; Narayanan et al., 1998; Szeliski and Golland, 1998; Roy and
Cox, 1998). In this respect, our analysis has goals similar to those
of theoretical approaches to structure-from-motion (Faugeras and
Maybank, 1990), although the di�erent assumptions employed (i.e.,
unknown vs. known correspondences, known vs. unknown cam-
era motion), make the geometry, solution space, and underlying
techniques completely di�erent.

2. Our analysis provides a volume which is the tightest possible bound
on the shape of the true scene that can be inferred from N pho-
tographs. This bound is important because it tells us precisely what
shape information we can hope to extract from N photographs,
in the absence of a priori geometric and point correspondence
information, regardless of the speci�c algorithm being employed.

3. The Space Carving Algorithm presented in this paper is the only
provably-correct method, to our knowledge, that enables scene re-
construction from input cameras at arbitrary positions. As such, the
algorithm enables reconstruction of complex scenes from viewpoints
distributed throughout an unknown 3D environment|an extreme
example is shown in Fig. 11a where the interior and exterior of a
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house are reconstructed simultaneously from cameras distributed
throughout the inside and outside of the house.

4. Because no constraints on the camera viewpoints are imposed, our
approach leads naturally to global reconstruction algorithms (Ku-
tulakos and Dyer, 1995; Seitz and Dyer, 1995) that recover 3D shape
information from all photographs in a single step. This eliminates
the need for complex partial reconstruction and merging operations
(Curless and Levoy, 1996; Turk and Levoy, 1994) in which partial
3D shape information is extracted from subsets of the photographs
(Narayanan et al., 1998; Kanade et al., 1995; Zhao and Mohr,
1996; Seales and Faugeras, 1995), and where global consistency
with the entire set of photographs is not guaranteed for the �nal
shape.

5. We describe an e�cient multi-sweep implementation of the Space
Carving Algorithm that enables recovery of photo-realistic 3D mod-
els from multiple photographs of real scenes, and exploits graphics
hardware acceleration commonly available on desktop PC's.

6. Because the shape recovered via Space Carving is guaranteed to
be photo-consistent, its reprojections will closely resemble pho-
tographs of the true scene. This property is especially signi�cant in
computer graphics, virtual reality, and tele-presence applications
(Tomasi and Kanade, 1992; Kanade et al., 1995; Moezzi et al.,
1996; Zhang, 1998; Kang and Szeliski, 1996; Sato et al., 1997)
where the photo-realism of constructed 3D models is of primary
importance.

1.1. Least-Commitment Shape Recovery

A key consequence of our photo-consistency analysis is that there are
3D scenes for which no �nite set of input photographs can uniquely
determine their shape: in general, there exists an uncountably-in�nite
equivalence class of shapes each of which reproduces all of the input
photographs exactly. This result is yet another manifestation of the
well-known fact that 3D shape recovery from a set of images is generally
ill-posed (Poggio et al., 1985), i.e., there may be multiple shapes that
are consistent with the same set of images.2 Reconstruction methods
must therefore choose a particular scene to reconstruct from the space
of all consistent shapes. Traditionally, the most common way of dealing
with this ambiguity has been to apply smoothness heuristics and reg-
ularization techniques (Poggio et al., 1985; Aloimonos, 1988) to obtain
reconstructions that are as smooth as possible. A drawback of this
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type of approach is that it typically penalizes discontinuities and sharp
edges, features that are very common in real scenes.

The notion of the photo hull introduced in this paper and the
Space Carving Algorithm that computes it lead to an alternative, least
commitment principle (Marr, 1982) for choosing among all of the photo-
consistent shapes: rather than making an arbitrary choice, we choose
the only photo-consistent reconstruction that is guaranteed to subsume
(i.e., contain within its volume) all other photo-consistent reconstruc-
tions of the scene. By doing so we not only avoid the need to impose
ad hoc smoothness constraints, which lead to reconstructions whose
relationship to the true shape are di�cult to quantify, we also ensure
that the recovered 3D shape can serve as a description for the entire
equivalence class of photo-consistent shapes.

While our work shows how to obtain a consistent scene reconstruc-
tion without imposing smoothness constraints or other geometric heuris-
tics, there are many cases where it may be advantageous to impose a
priori constraints, especially when the scene is known to have a cer-
tain structure (Debevec et al., 1996; Kakadiaris and Metaxas, 1995).
Least-commitment reconstruction suggests a new way of incorporating
such constraints: rather than imposing them as early as possible in the
reconstruction process, we can impose them after �rst recovering the
photo hull. This allows us to delay the application of a priori constraints
until a later stage in the reconstruction process, when tight bounds on
scene structure are available and where these constraints are used only
to choose among shapes within the class of photo-consistent reconstruc-
tions. This approach is similar in spirit to \strati�cation" approaches
of shape recovery (Faugeras, 1995; Koenderink and van Doorn, 1991),
where 3D shape is �rst recovered modulo an equivalence class of recon-
structions and is then re�ned within that class at subsequent stages of
processing.

The remainder of this paper is structured as follows. Section 2 ana-
lyzes the constraints that a set of photographs place on scene structure
given a known, locally-computable model of scene radiance. Using these
constraints, a theory of photo-consistency is developed that provides
a basis for characterizing the space of all reconstructions of a scene.
Sections 3 and 4 then use this theory to present the two central re-
sults of the paper, namely the existence of the photo hull and the
development of a provably-correct algorithm called Space Carving that
computes it. Section 5 then presents a discrete implementation of the
Space Carving Algorithm that iteratively \carves" out the scene from
an initial set of voxels. This algorithm can be seen as a generalization
of silhouette-based techniques like volume intersection (Martin and
Aggarwal, 1983; Szeliski, 1993; Kutulakos, 1997; Moezzi et al., 1996)
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(a) (b)

Figure 1. Viewing geometry. The scene volume and camera distribution covered
by our analysis are both completely unconstrained. Examples include (a) a 3D
environment viewed from a collection of cameras that are arbitrarily dispersed in
free space, and (b) a 3D object viewed by a single camera moving around it.

to the case of gray-scale and full-color images, and generalizes voxel
coloring (Seitz and Dyer, 1999) and plenoptic decomposition (Seitz and
Kutulakos, 1998) to the case of arbitrary camera geometries.3 Section
6 concludes with experimental results on real and synthetic images.

2. Picture Constraints

Let V be a shape de�ned by a closed and opaque set of points that
occupy a volume in space.4 We assume that V is viewed under perspec-
tive projection from N known positions c1; : : : ; cN in IR3 � V (Figure
1b). The radiance of a point p on the shape's surface, Surf(V) is a
function radp(�) that maps every oriented ray � through the point to the
color of light reected from p along �. We use the term shape-radiance
scene description to denote the shape V together with an assignment
of a radiance function to every point on its surface. This description
contains all the information needed to reproduce a photograph of the
scene for any camera position.5

Every photograph of a 3D scene taken from a known location parti-
tions the set of all possible shape-radiance scene descriptions into two
families, those that reproduce the photograph and those that do not.
We characterize this constraint for a given shape and a given radiance
assignment by the notion of photo-consistency:6

De�nition 1 (Point Photo-Consistency) Let S be an arbitrary sub-
set of IR3. A point p 2 S that is visible from c is photo-consistent with

paper.tex; 24/03/2000; 18:30; p.7



8 Kutulakos and Seitz

the photograph at c if (1) p does not project to a background pixel, and
(2) the color at p's projection is equal to radp(~pc). If p is not visible
from c, it is trivially photo-consistent with the photograph at c.

De�nition 2 (Shape-Radiance Photo-Consistency) A shape-radiance
scene description is photo-consistent with the photograph at c if all
points visible from c are photo-consistent and every non-background
pixel is the projection of a point in V.

De�nition 3 (Shape Photo-Consistency) A shape V is photo-consistent
with a set of photographs if there is an assignment of radiance func-
tions to the visible points of V that makes the resulting shape-radiance
description photo-consistent with all photographs.

Our goal is to provide a concrete characterization of the family of all
scenes that are photo-consistent with N input photographs. We achieve
this by making explicit the two ways in which photo-consistency with
N photographs can constrain a scene's shape.

2.1. Background Constraints

Photo-consistency requires that no point of V projects to a background
pixel. If a photograph taken at position c contains identi�able back-
ground pixels, this constraint restricts V to a cone de�ned by c and the
photograph's non-background pixels. Given N such photographs, the
scene is restricted to the visual hull, which is the volume of intersection
of their corresponding cones (Laurentini, 1994).

When no a priori information is available about the scene's ra-
diance, the visual hull de�nes all the shape constraints in the input
photographs. This is because there is always an assignment of radiance
functions to the points on the surface of the visual hull that makes
the resulting shape-radiance description photo-consistent with the N
input photographs.7 The visual hull can therefore be thought of as a
\least commitment reconstruction" of the scene|any further re�ne-
ment of this volume must rely on assumptions about the scene's shape
or radiance.

While visual hull reconstruction has often been used as a method
for recovering 3D shape from photographs (Szeliski, 1993; Kutulakos,
1997), the picture constraints captured by the visual hull only exploit
information from the background pixels in these photographs. Unfor-
tunately, these constraints become useless when photographs contain
no background pixels (i.e., the visual hull degenerates to IR3) or when
background identi�cation (Smith and Blinn, 1996) cannot be performed
accurately. Below we study picture constraints from non-background
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pixels when the scene's radiance is restricted to a special class of radi-
ance models. The resulting constraints lead to photo-consistent scene
reconstructions that are subsets of the visual hull, and unlike the visual
hull, can contain concavities.

2.2. Radiance Constraints

Surfaces that are not transparent or mirror-like reect light in a coher-
ent manner, i.e., the color of light reected from a single point along
di�erent directions is not arbitrary. This coherence provides additional
picture constraints beyond what can be obtained from background in-
formation. In order to take advantage of these constraints, we focus on
scenes whose radiance satis�es the following criteria:

Consistency Check Criteria:

1. An algorithm consistK() is available that takes as input at
least K � N colors col1; : : : ; colK , K vectors �1; : : : ; �K , and
the light source positions (non-Lambertian case), and decides
whether it is possible for a single surface point to reect light
of color coli in direction �i simultaneously for all i = 1; : : : ;K.

2. consistK() is assumed to be monotonic, i.e.,
consistK(col1; : : : ; colj; �1; : : : ; �j) implies that
consistK(col1; : : : ; colj�1; �1; : : : ; �j�1) for every permutation
of 1; : : : ; j.

Given a shape V, the Consistency Check Criteria give us a way to
establish the photo-consistency of every point on V's surface. These
criteria de�ne a general class of radiance models, that we call locally
computable, that are characterized by a locality property: the radiance
at any point is independent of the radiance of all other points in
the scene. The class of locally-computable radiance models therefore
restricts our analysis to scenes where global illumination e�ects such
as transparency (Szeliski and Golland, 1998), inter-reection (Forsyth
and Zisserman, 1991), and shadows can be ignored. For example, inter-
reection and shadows in Lambertian scenes viewed under �xed illumi-
nation are correctly accounted for because scene radiance is isotropic
even when such e�ects are present. As a result, the class of locally-
computable radiance models subsumes the Lambertian (K = 2) and
other parameterized models of scene radiance.8

Given an a priori locally computable radiance model for the scene,
we can determine whether or not a given shape V is photo-consistent
with a collection of photographs. Even more importantly, when the
scene's radiance is described by such a model, the non-photo-consistency
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Figure 2. Illustration of the Visibility and Non-Photo-Consistency Lemmas. If p is
non-photo-consistent with the photographs at c1; c2; c3, it is non-photo-consistent
with the entire set VisV0(p), which also includes c4.

of a shape V tells us a great deal about the shape of the underlying
scene. We use the following two lemmas to make explicit the structure
of the family of photo-consistent shapes. These lemmas provide the
analytical tools needed to describe how the non-photo-consistency of a
shape V a�ects the photo-consistency of its subsets (Figure 2):

Lemma 1 (Visibility Lemma) Let p be a point on V's surface, Surf(V),
and let VisV(p) be the collection of input photographs in which V does
not occlude p. If V 0 � V is a shape that also has p on its surface,
VisV(p) � VisV 0(p).

Proof. Since V 0 is a subset of V, no point of V 0 can lie between p and
the cameras corresponding to VisV(p). QED

Lemma 2 (Non-Photo-Consistency Lemma) If p 2 Surf(V) is not
photo-consistent with a subset of VisV(p), it is not photo-consistent with
VisV(p).

Intuitively, Lemmas 1 and 2 suggest that both visibility and non-
photo-consistency exhibit a form of \monotonicity:" the Visibility Lemma
tells us that the collection of photographs from which a surface point
p 2 Surf(V) is visible strictly expands as V gets smaller (Figure 2).
Analogously, the Non-Photo-Consistency Lemma, which follows as a
direct consequence of the de�nition of photo-consistency, tells us that
each new photograph can be thought of as an additional constraint
on the photo-consistency of surface points|the more photographs are
available, the more di�cult it is for those points to achieve photo-
consistency. Furthermore, once a surface point fails to be photo-consistent
no new photograph of that point can re-establish photo-consistency.

The key consequence of Lemmas 1 and 2 is given by the following
theorem which shows that non-photo-consistency at a point rules out
the photo-consistency of an entire family of shapes:
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Theorem 1 (Subset Theorem) If p 2 Surf(V) is not photo-consistent,
no photo-consistent subset of V contains p.

Proof. Let V 0 � V be a shape that contains p. Since p lies on the
surface of V, it must also lie on the surface of V 0. From the Visibility
Lemma it follows that VisV(p) � VisV 0(p). The theorem now follows
by applying the Non-Photo-Consistency Lemma to V 0 and using the
locality property of locally computable radiance models. QED

We explore the rami�cations of the Subset Theorem in the next
section.

3. The Photo Hull

The family of all shapes that are photo-consistent with N photographs
de�nes the ambiguity inherent in the problem of recovering 3D shape
from those photographs. When there is more than one photo-consistent
shape it is impossible to decide, based on those photographs alone,
which photo-consistent shape corresponds to the true scene. This am-
biguity raises two important questions regarding the feasibility of scene
reconstruction from photographs:

� Is it possible to compute a shape that is photo-consistent with N

photographs and, if so, what is the algorithm?

� If a photo-consistent shape can be computed, how can we relate
that shape to all other photo-consistent 3D interpretations of the
scene?

Before providing a general answer to these questions we observe that
when the number of input photographs is �nite, the �rst question can
be answered with a trivial shape (Figure 3a). In general, trivial shape
solutions such as this one can be eliminated with the incorporation
of free space constraints, i.e., regions of space that are known not to
contain scene points. Our analysis enables the (optional) inclusion of
such constraints by specifying an arbitrary set V within which a photo-
consistent shape is known to lie.9

In particular, our answers to both questions rest on the following
theorem. Theorem 2 shows that for any shape V there is a unique
photo-consistent shape that subsumes, i.e., contains within its volume,
all other photo-consistent shapes in V (Figure 3b):

Theorem 2 (Photo Hull Theorem) Let V be an arbitrary subset of
IR3. If V� is the union of all photo-consistent shapes in V, every point
on the surface of V� is photo-consistent. We call V� the photo hull.10
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12 Kutulakos and Seitz

(a) (b)

Figure 3. Photo-consistent shapes for a two-dimensional scene viewed by four cam-
eras. The scene consists of a black square whose sides are painted di�use red, blue,
orange, and green. (a) Trivial shape solutions in the absence of free-space constraints.
Carving out a small circle around each camera and projecting the image onto the
interior of that circle yields a trivial photo-consistent shape, shown in gray. (b)
Illustration of the Photo Hull Theorem. The gray-shaded region corresponds to an
arbitrary shape V containing the square in (a). V� is a polygonal region that extends
beyond the true scene and whose boundary is de�ned by the polygonal segments
�; �; , and �. When these segments are colored as shown, V�'s projections are
indistinguishable from that of the true object and no photo-consistent shape in the
gray-shaded region can contain points outside V�.

Proof. (By contradiction) Suppose that p is a surface point on V�

that is not photo-consistent. Since p 2 V�, there exists a photo-consistent
shape, V 0 � V�, that also has p on its surface. It follows from the Subset
Theorem that V 0 is not photo-consistent. QED

Corollary 1 If V� is closed, it is a photo-consistent shape.

Theorem 2 provides an explicit relation between the photo hull and
all other possible 3D interpretations of the scene: the theorem guaran-
tees that every such interpretation is a subset of the photo hull. The
photo hull therefore represents a least-commitment reconstruction of
the scene.

While every point on the photo hull is photo-consistent, the hull
itself is not guaranteed to be closed, i.e., it may not satisfy our de�nition
of a shape. Speci�c cases of interest where V� is closed include (1)
discretized scene volumes, i.e., scenes that are composed of a �nite
number of volume elements, and (2) instances where the number of
photo-consistent shapes in a volume is �nite. We describe a volumetric
algorithm for computing discretized photo hulls in the next section.
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The general case, where the photo hull is an in�nite union of shapes,
is considered in the Appendix.

4. Reconstruction by Space Carving

An important feature of the photo hull is that it can be computed
using a simple, discrete algorithm that \carves" space in a well-de�ned
manner. Given an initial volume V that contains the scene, the algo-
rithm proceeds by iteratively removing (i.e. \carving") portions of that
volume until it converges to the photo hull, V�. The algorithm can
therefore be fully speci�ed by answering four questions: (1) how do we
select the initial volume V, (2) how should we represent that volume to
facilitate carving, (3) how do we carve at each iteration to guarantee
convergence to the photo hull, and (4) when do we terminate carving?

The choice of the initial volume has a considerable impact on the
outcome of the reconstruction process (Figure 3). Nevertheless, selec-
tion of this volume is beyond the scope of this paper; it will depend on
the speci�c 3D shape recovery application and on information about
the manner in which the input photographs were acquired.11 Below
we consider a general algorithm that, given N photographs and any
initial volume that contains the scene, is guaranteed to �nd the (unique)
photo hull contained in that volume.

In particular, let V be an arbitrary �nite volume that contains the
scene as an unknown sub-volume. Also, assume that the surface of the
true scene conforms to a radiance model de�ned by a consistency check
algorithm consistK(). We represent V as a �nite collection of voxels
v1; : : : ; vM . Using this representation, each carving iteration removes a
single voxel from V.

The Subset Theorem leads directly to a method for selecting a voxel
to carve away from V at each iteration. Speci�cally, the theorem tells
us that if a voxel v on the surface of V is not photo-consistent, the
volume V = V � fvg must still contain the photo hull. Hence, if only
non-photo-consistent voxels are removed at each iteration, the carved
volume is guaranteed to converge to the photo hull. The order in which
non-photo-consistent voxels are examined and removed is not impor-
tant for guaranteeing correctness. Convergence to this shape occurs
when no non-photo-consistent voxel can be found on the surface of the
carved volume. These considerations lead to the following algorithm for
computing the photo hull:12

Space Carving Algorithm

Step 1: Initialize V to a volume containing the true scene.
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Step 2: Repeat the following steps for voxels v 2 Surf(V) until a non-
photo-consistent voxel is found:

a. Project v to all photographs in VisV(v). Let col1; : : : ; colj be
the pixel colors to which v projects and let �1; : : : ; �j be the
optical rays connecting v to the corresponding optical centers.

b. Determine the photo-consistency of v using
consistK(col1; : : : ; colj; �1; : : : ; �j).

Step 3: If no non-photo-consistent voxel is found, set V� = V and
terminate. Otherwise, set V = V � fvg and repeat Step 2.

The key step in the algorithm is the search and voxel consistency
checking of Step 2. The following proposition gives an upper bound on
the number of voxel photo-consistency checks:

Proposition 1 The total number of required photo-consistency checks
is bounded by N �M where N is the number of input photographs and
M is the number of voxels in the initial (i.e., uncarved) volume.

Proof. Since (1) the photo-consistency of a voxel v that remains on
V's surface for several carving iterations can change only when VisV(v)
changes due to V's carving, and (2) VisV(v) expands monotonically as
V is carved (Visibility Lemma), the photo-consistency of v must be
checked at most N times. QED

5. A Multi-Sweep Implementation of Space Carving

Despite being relatively simple to describe, the Space Carving Algo-
rithm as described in Section 4 requires a di�cult update procedure
because of the need to keep track of scene visibility from all of the input
cameras. In particular, every time a voxel is carved a new set of voxels
becomes newly visible and must be re-evaluated for photo-consistency.
Keeping track of such changes necessitates computationally-expensive
ray-tracing techniques or memory-intensive spatial data structures (Cul-
bertson et al., 1999). To overcome these problems, we instead de-
scribe a multi-sweep implementation of the Space Carving Algorithm
that enables e�cient visibility computations with minimal memory
requirements.
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p q

C1 C2

Figure 4. A Visibility Cycle. Voxel p occludes q from c1, whereas q occludes p from
c2. Hence, no visibility order exists that is the same for both cameras.

5.1. Multi-view Visibility Ordering

A convenient method of keeping track of voxel visibility is to evaluate
voxels in order of visibility, i.e., visit occluders before the voxels that
they occlude. The key advantage of this approach is that backtracking
is avoided|carving a voxel a�ects only voxels encountered later in the
sequence. For a single camera, visibility ordering amounts to visiting
voxels in a front-to-back order and may be accomplished by depth-
sorting (Newell et al., 1972; Fuchs et al., 1980). The problem of de�ning
visibility orders that apply simultaneously to multiple cameras is more
di�cult, however, because it requires that voxels occlude each other
in the same order from di�erent viewpoints. More precisely, voxel p is
evaluated before q only if q does not occlude p from any one of the
input viewpoints.

It is known that multi-view visibility orders exist for cameras that
lie on one side of a plane (Langer and Zucker, 1994). Recently, Seitz
and Dyer (Seitz and Dyer, 1999) generalized this case to a range of
interesting camera con�gurations by showing that multi-view visibility
orders always exist when the scene lies outside the convex hull of the
camera centers. When this constraint is satis�ed, evaluating voxels in
order of increasing distance to this camera hull yields a multi-view
visibility order that may be used to reconstruct the scene. The convex
hull constraint is a signi�cant limitation, however, because it strongly
restricts the types of scenes and range of views that are reconstructible.
In fact, it can be readily shown that no multi-view visibility constraint
exists in general (Fig. 4). Therefore, di�erent techniques are needed
in order to reconstruct scenes like Fig. 4 that violate the convex hull
constraint.

5.2. Plane-Sweep Visibility

While multi-view visibility orders do not exist in the general case, it is
possible to de�ne visibility orders that apply to a subset of the input
cameras. In particular, consider visiting voxels in order of increasing X
coordinate and, for each voxel p = (Xp; Yp; Zp), consider only cameras
whose X coordinates are less than Xp. If p occludes q from a camera
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16 Kutulakos and Seitz

(a) (b)

Figure 5. Plane-Sweep Visibility. The plane-sweep algorithm ensures that voxels are
visited in order of visibility with respect to all active cameras. The current plane and
active set of cameras is shown in orange. (b) The shape evolves and new cameras
become active as the plane moves through the scene volume.

at c, it follows that p is on the line segment cq and therefore Xp < Xq.
Consequently, p is evaluated before q, i.e., occluders are visited before
the voxels that they occlude.

Given this ordering strategy, the Space Carving Algorithm can be
implemented as a multi-sweep volumetric algorithm in which a solid
block of voxels is iteratively carved away by sweeping a single plane
through the scene along a set of pre-de�ned sweep directions (Fig. 5).
For each position of the plane, voxels on the plane are evaluated by
considering their projections into input images from viewpoints on one
side of the plane. In the above example, a plane parallel to the Y-Z
axis is swept in the increasing X direction.

Plane Sweep Algorithm

Step 1: Given an initial volume V, initialize the sweep plane � such
that V lies below � (i.e., � is swept towards V).

Step 2: Intersect � with the current shape V.

Step 3: For each surface voxel v on �:

a. let c1; : : : ; cj be the cameras above � for which v projects to
an unmarked pixel;

b. determine the photo-consistency of v using
consistK(col1; : : : ; colj; �1; : : : ; �j);

c. if v is inconsistent then set V = V � fvg, otherwise mark the
pixels to which v projects.

Step 4: Move � downward one voxel width and repeat Step 2 until V
lies above �.
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The dominant costs of this algorithm are (1) projecting a plane of
voxels intoN images, and (2) correlating pixels using consistK(col1; : : : ; colj ; �1; : : : ; �j).
Our implementation exploits texture-mapping graphics hardware (the
kind found on standard PC graphics cards) to project an entire plane
of voxels at a time onto each image. We have found that when this
optimization is used, the pixel correlation step dominates the compu-
tation.

5.3. Multi-Sweep Space Carving

The Plane Sweep Algorithm considers only a subset of the input cam-
eras for each voxel, i.e., the cameras on one side of the sweep plane.
Consequently, it may fail to carve voxels that are inconsistent with the
entire set of input images but are consistent with a proper subset of
these images. To ensure that all cameras are considered, we repeat-
edly perform six sweeps through the volume, corresponding to the six
principle directions (increasing and decreasing X, Y, and Z directions).
Furthermore, to guarantee that all cameras visible to a voxel are taken
into account, we perform an additional round of voxel consistency
checks that incorporate the voxel visibility information collected from
individual sweeps. The complete algorithm is as follows:

Multi-Sweep Space Carving Algorithm

Step 1: Initialize V to be a superset of the true scene.

Step 2: Apply the Plane Sweep Algorithm in each of the six principle
directions and update V accordingly.

Step 3: For every voxel in V whose consistency was evaluated in more
than one plane sweep:

a. let c1; : : : ; cj be the cameras that participated in the consistency
check of v in some plane sweep during Step 2;

b. determine the photo-consistency of v using
consistK(col1; : : : ; colj; �1; : : : ; �j).

Step 4: If no voxels were removed from V in Steps 2 and 3, set V� = V
and terminate; otherwise, repeat Step 2.

5.4. Lambertian Scenes

We give special attention to case of Lambertian scenes, in which the
Consistency Check Criteria can be de�ned using the standard deviation
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of colors, col1; : : : ; colK , at a voxel's projection. To account for errors
in the image formation process due to quantization, calibration, or
other e�ects, we call a voxel photo-consistent if � is below a given
threshold. This threshold is chosen by considering � to be a statistical
measure of voxel photo-consistency. In particular, suppose the sensor
error (accuracy of irradiance measurement) is normally distributed13

with standard deviation �0. The photo-consistency of a voxel v can be
estimated using the likelihood ratio test, distributed as �2 with K � 1
degrees of freedom (Freund, 1992):

�v =
(K � 1)�2

�20
: (1)

This formulation of the Consistency Check Criterion allows us to
incorporate two additional optimizations to the Multi-Sweep Carving
Algorithm. First, we maintain su�cient per-voxel color statistics be-
tween sweeps to integrate information from all input images, therefore
eliminating the need for Step 3 of the multi-sweep algorithm. This
is because the standard deviation of K monochrome pixel values of
intensity coli, can be computed using the following recursive formula:

�2 =
1

K

 
KX
i=1

col2i �
KX
i=1

coli

!
: (2)

It is therefore su�cient to maintain three numbers per voxel, namelyPK
i=1 coli,

PK
i=1 col

2
i , and K (i.e., seven numbers for three-component

color pixels). Second, to ensure that no camera is considered more
than once per voxel in the six sweeps, we further restrict the cameras
considered in each sweep to a pyramidal beam de�ned by the voxel
center and one of its faces, as shown in Fig. 6. This strategy partitions
the cameras into six non-overlapping sets to be processed in the six
respective sweeps, thereby ensuring that each camera is considered
exactly once per voxel during the six sweeps.

6. 3D Photography by Space Carving

6.1. Image Acquisition

In the Space Carving Algorithm, every input photograph can be thought
of as a shape constraint that forces the reconstructed scene volume to
contain only voxels consistent with the photograph. To ensure that
the algorithm's output closely resembles the shape and appearance of
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voxel

sweep plane

sweep direction

Figure 6. To ensure that a camera is processed at most once per voxel during the six
plane sweeps, the set of cameras considered in each sweep is clipped to a pyramidal
beam de�ned by the center of the voxel and one of its faces.

a complicated 3D scene it is therefore important to acquire enough
photographs of the scene itself. In a typical image acquisition session,
we take between 10 and 100 calibrated images around the scene of
interest using a Pulnix TMC-9700 color CCD camera (Fig. 7).

A unique property of the Space Carving Algorithm is that it can be
forced to automatically segment a 3D object of interest from a larger
scene using two complementary methods. The �rst method, illustrated
in the sequence of Fig. 7, involves slightly modifying the image acquisi-
tion process|before we take a photograph of the object of interest
from a new viewpoint, we manually alter the object's background.
This process enabled segmentation and complete reconstruction of the
gargoyle sculpture; the Space Carving Algorithm e�ectively removed
all background pixels in all input photographs because the varying
backgrounds ensured that photo-consistency could not be enforced for
points projecting to non-object pixels. Note that image subtraction
or traditional matting techniques (Smith and Blinn, 1996) cannot be
applied to this image sequence to segment the sculpture since every
photograph was taken from a di�erent position in space and therefore
the background is di�erent in each image. The second method, illus-
trated in Fig. 9, involves de�ning an initial volume V (e.g., a bounding
box) that is \tight enough" to ensure reconstruction of only the object
of interest. This process enabled segmentation of the hand because the
initial volume did not intersect distant objects such as the TV monitor.
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6.2. Reconstruction Results

In this section we present results from applying our Multi-Sweep im-
plementation of the Space Carving Algorithm to a variety of image
sequences. In all examples, a Lambertian model was used for the Con-
sistency Check Criterion, i.e., it was assumed that a voxel projects to
pixels of the same color in every image. The standard deviation of these
pixels was therefore used to determine whether or not a voxel should
be carved, as described in Section 5.

We �rst ran the Space Carving Algorithm on 16 images of a gar-
goyle sculpture (Fig. 7). The sub-pixel calibration error in this sequence
enabled using a small threshold of 6% for the RGB component error.
This threshold, along with the voxel size and the 3D coordinates of a
bounding box containing the object were the only parameters given as
input to our implementation. Fig. 8 shows selected input images and
new views of the reconstruction. This reconstruction consisted of 215
thousand surface voxels that were carved out of an initial volume of
approximately 51 million voxels. It took 250 minutes to compute on an
SGI O2 R10000/175MHz workstation. Some errors are still present in
the reconstruction, notably holes that occur as a result of shadows and
other illumination changes due to the object's rotation inside a static,
mostly di�use illumination environment. These e�ects were not mod-
eled by the Lambertian model and therefore caused voxels on shadowed
surfaces to be carved. The �nite voxel size, calibration error, and image
discretization e�ects resulted in a loss of some �ne surface detail. Voxel
size could be further reduced with better calibration, but only up to the
point where image discretization e�ects (i.e., �nite pixel size) become
a signi�cant source of error.

Results from a sequence of one hundred images of a hand are shown
in Figs. 9 and 10. Note that the near-perfect segmentation of the hand
from the rest of the scene was performed not in image-space, but in
3D object space|the background lay outside the initial block of voxels
and was therefore not reconstructed. This method of 3D background
segmentation has signi�cant advantages over image subtraction and
chroma-keying methods because it (1) does not require the background
to be known and (2) will never falsely eliminate foreground pixels, as
these former techniques are prone to do (Smith and Blinn, 1996).

Two kinds of artifacts exist in the resulting reconstructions. First,
voxels that are not visible from any input viewpoint do not have a
well-de�ned color assignment and are given a default color. These arti-
facts can be eliminated by acquiring additional photographs to provide
adequate coverage of the scene's surfaces. Second, stray voxels may be
reconstructed in unoccupied regions of space due to accidental agree-
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Figure 7. Nine of sixteen 486x720 RGB images of a gargoyle stone sculpture. The
sequence corresponds to a complete circumnavigation of the object, performed in
approximately 22:5 degree increments.

ments between the input images. Such artifacts can be easily avoided
by re-applying the Space Carving Algorithm on an initial volume that
does not contain those regions or by post-�ltering the reconstructed
voxel model.

In a �nal experiment, we applied our algorithm to images of a
synthetic building scene rendered from both its interior and exterior
(Figure 11). This placement of cameras yields an extremely di�cult
stereo problem, due to the drastic changes in visibility between interior
and exterior cameras.14 Figure 11 compares the original model and the
reconstruction from di�erent viewpoints. The model's appearance is
very good near the input viewpoints, as demonstrated in Figs. 11b-c.
Note that the reconstruction tends to \bulge" out and that the walls are
not perfectly planar (Figure 11e). This behavior is exactly as predicted
by Theorem 2|the algorithm converges to the largest possible shape
that is consistent with the input images. In low-contrast regions where

paper.tex; 24/03/2000; 18:30; p.21



22 Kutulakos and Seitz

(a) (b)

(c) (d)

Figure 8. Reconstruction of a gargoyle sculpture. One of 16 input images is shown
(a), along with views of the reconstruction from the same (b) and new (c-d)
viewpoints.
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Figure 9. Six out of one hundred photographs of a hand sequence.

shape is visually ambiguous, this causes signi�cant deviations between
the computed photo hull and the true scene. While these deviations do
not adversely a�ect scene appearance near the input viewpoints, they
can result in noticeable artifacts for far-away views. These deviations
and the visual artifacts they cause are easily remedied by including
images from a wider range of camera viewpoints to further constrain
the scene's shape, as shown in Figure 11f.

Our experiments highlight a number of advantages of our approach
over previous techniques. Existing multi-baseline stereo techniques (Oku-
tomi and Kanade, 1993) work best for densely textured scenes and
su�er in the presence of large occlusions. In contrast, the hand sequence
contains many low-textured regions and dramatic changes in visibility.
The low-texture and occlusion properties of such scenes cause problems
for feature-based structure-from-motion methods (Tomasi and Kanade,
1992; Seitz and Dyer, 1995; Beardsley et al., 1996; Pollefeys et al.,
1998), due to the di�culty of locating and tracking a su�cient number
of features throughout the sequence. While contour-based techniques
like volume intersection (Martin and Aggarwal, 1983; Szeliski, 1993)
often work well for similar scenes, they require detecting silhouettes
or occluding contours. For the gargoyle sequence, the background was
unknown and heterogeneous, making the contour detection problem
extremely di�cult. Note also that Seitz and Dyer's voxel coloring tech-
nique (Seitz and Dyer, 1999) would not work for any of the above
sequences because of the constraints it imposes on camera placement.
Our approach succeeds because it integrates both texture and con-
tour information as appropriate, without the need to explicitly detect
features or contours, or constrain viewpoints. Our results indicate the
approach is highly e�ective for both densely textured and untextured
objects and scenes.

paper.tex; 24/03/2000; 18:30; p.23



24 Kutulakos and Seitz

(a) (b)

(c) (d)

(e) (f)

Figure 10. Reconstruction of a hand. An input image is shown in (a) along with
views of the reconstruction from the same (b) and other (d-f) viewpoints. The
reconstructed model was computed using an RGB component error threshold of
6%. The model has 112 thousand voxels and took 53 seconds to compute. The blue
line in (b) indicates the z-axis of the world coordinate system.
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7. Concluding Remarks

This paper introduced photo-consistency theory as a new, general math-
ematical framework for analyzing the 3D shape recovery problem from
multiple images. We have shown that this theory leads to a \least
commitment" approach for shape recovery and a practical algorithm
called Space Carving that together overcome several limitations in the
current state of the art. First, the approach allows us to analyze and
characterize the set of all possible reconstructions of a scene, without
placing constraints on geometry, topology, or camera con�guration.
Second, this is the only provably-correct method, to our knowledge,
capable of reconstructing non-smooth, free-form shapes from cameras
positioned and oriented in a completely arbitrary way. Third, the per-
formance of the Space Carving Algorithm was demonstrated on real and
synthetic image sequences of geometrically-complex objects, including
a large building scene photographed from both interior and exterior
viewpoints. Fourth, the use of photo-consistency as a criterion for 3D
shape recovery enables the development of reconstruction algorithms
that allow faithful image reprojections and resolve the complex in-
teractions between occlusion, parallax, and shading e�ects in shape
analysis.

While the Space Carving Algorithm's e�ectiveness was demonstrated
in the presence of low image noise, the photo-consistency theory itself is
based on an idealized model of image formation. Extending the theory
to explicitly model image noise, quantization and calibration errors, and
their e�ects on the photo hull is an open research problem (Kutulakos,
2000). Extending the formulation to handle non-locally computable ra-
diance models (e.g., shadows and inter-reections) is another important
topic of future work. Other research directions include (1) developing
space carving algorithms for images with signi�cant pixel noise, (2) in-
vestigating the use of surface-based rather than voxel-based techniques
for �nding the photo hull, (3) incorporating a priori shape constraints
(e.g., smoothness), and (4) analyzing the topological structure of the
set of photo-consistent shapes. Finally, an on-line implementation of
the Space Carving Algorithm, that performs image capture and scene
reconstruction simultaneously, would be extremely useful both to facil-
itate the image acquisition process and to eliminate the need to store
long video sequences.
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Virtual View

(a)

(b) (c)

(d) (e) (f)

Figure 11. Reconstruction of a synthetic building scene. (a) 24 Cameras were placed
in both the interior and exterior of a building to enable simultaneous, complete re-
construction of its exterior and interior surfaces. The reconstruction contains 370,000
voxels, carved out of a 200 � 170 � 200 voxel block. (b) A rendered image of the
building for a viewpoint near the input cameras (shown as \virtual view" in (a)) is
compared to the view of the reconstruction (c). (d-f) Views of the reconstruction
from far away camera viewpoints. (d) shows a rendered top view of the original
building, (e) the same view of the reconstruction, and (f) a new reconstruction
resulting from adding image (d) to the set of input views. Note that adding just a
single top view dramatically improves the quality of the reconstruction.
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Appendix

In general, the photo hull, V�, of a set V is the union of a potentially
in�nite collection of shapes in V. Such unions do not always correspond
to a closed subset of IR3 (Armstrong, 1983). As a result, even though
all points of the photo hull are photo-consistent, the photo hull itself
may not satisfy the de�nition of a 3D shape given in Section 2. In
this Appendix we investigate the properties of the closure, V�, of V�

which is always a valid shape.15 In particular, we show that V� satis�es
a slightly weaker form of photo-consistency called directional �-photo-
consistency, de�ned below. This property leads to a generalization of
Theorem 2:

Theorem 3 (Closed Photo Hull Theorem) Let V be an arbitrary
shape in IR3 and let V� be the closure of the union of all photo-consistent
shapes in V. The shape V� is directionally �-photo-consistent and is
called the closed photo hull.

A.1. The Strong Visibility Condition

Because we impose no constraints on the structure of the photo-consistent
shapes in V that are considered in our analysis (e.g., smoothness), it is
possible to de�ne degenerate shapes that defy one's \intuitive" notions
of visibility and occlusion. More speci�cally, the standard de�nition of
visibility of a surface point p from a camera c requires that the open line
segment pc does not intersect the shape itself; otherwise, p is de�ned
to be occluded. When V is arbitrary, however, it is possible to de�ne
shapes whose surface gets in�nitesimally close to this line segment at
one or more points other than p. Intuitively, surface points that have
this property are not occluded under the above de�nition but are not
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\fully visible" either. We therefore re�ne the notion of visibility in a
way that excludes such degeneracies. In particular, let B(p; �) � IR3 be
the open 3-ball of radius � that is centered at p:

De�nition 4 (Strong Visibility Condition) A point p on the sur-
face of a shape V is strongly visible to a set of cameras if it is visible
from those cameras and if, for every � > 0, there exists a closed set N
and an �0 < e such that the following two properties are satis�ed:

1. N contains all its occluders, i.e., for every camera c and point
p 2 N , if q occludes p from c then q 2 N , and

2. B(p; �0) � N � B(p; �).

Intuitively, the strong visibility condition is equivalent to the stan-
dard de�nition of point visibility for shapes that are \well-behaved"|it
di�ers from this de�nition only in cases where the ray from point p to a
camera comes arbitrarily close to the shape outside p's neighborhood.
An illustration of a strong visibility neighborhood N is given in Fig.
12b.

A.2. Directional �-Photo-Consistency

When V� and V� are not equal, the closed photo hull will contain limit
points that do not belong to any photo-consistent subset of V. These
limit points are not always photo-consistent (Fig. 12a). Fortunately,
even though the photo-consistency of these points cannot be guaran-
teed, these points (as well as the rest of V�) do satisfy the directional
�-photo-consistency property:

De�nition 5 (Strongly Visible Camera Set) If p 2 V, �p is a
plane through p, and C is the set of cameras in VisV(p) that are strictly
above �p, de�ne

SVisV(�p) =

(
C if p is strongly visible to C;

; otherwise:
(3)

De�nition 6 (Directional Point Photo-Consistency) A point p in
V is directionally photo-consistent if for every oriented plane �p through
p, the point p is photo-consistent with all cameras in SVisV(�p).

De�nition 7 (Directional �-photo-consistency) A point p in V is
directionally �-photo-consistent if for every � > 0 and every oriented
plane �p through p, there exists a point q 2 B(p; e) that is photo-
consistent with all cameras in SVisV(�p).
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Figure 12. (a) Non-photo-consistent points on the closed photo hull. The 2D scene
is composed of a closed thick line segment ab that is painted gray, white, and black.
The points d1; d2, corresponding to color transitions, are painted white. When V is
de�ned by the triangle abc, the closed photo hull, V�, is de�ned by the region shown
in light gray. Note that even though p 2 V� is directionally �-photo-consistent, it
is not photo-consistent: p projects to a white pixel in the left camera and a gray
pixel in the right one. (b)-(c) Proof of Theorem 3. (b) A point p is strongly visible
to three cameras by means of neighborhood N . (c) The closest point q 2 N \ P to
�c is visible to all cameras on or above �c.

Compared to the de�nition of point photo-consistency (De�nition 1),
directional photo-consistency relaxes the requirement that p's radiance
assignment must agree with all visible cameras. Instead, it requires
the ability to �nd radiance assignment(s) that force agreement only
with visible cameras within the same half-space. Directional �-photo-
consistency goes a step further, lifting the requirement that every sur-
face point p must have a directionally consistent radiance assignment.
The only requirement is that p is in�nitesimally close to a point for
which directional consistency can be established with respect to the
cameras from which p is strongly visible.

Despite their di�erences, photo-consistency and directional �-photo-
consistency share a common characteristic: we can determine whether
or not these properties hold for a given shape V without having any
information about the photo-consistent shapes contained in V. This
is especially important when attempting to characterize V� because it
establishes a direct link between V� and the image observations that
does not depend on explicit knowledge of the family of photo-consistent
shapes.

A.3. Proof of Theorem 3

Since points that are not strongly visible are always directionally �-
photo-consistent, it is su�cient to consider only strongly visible points
p 2 V�. More speci�cally, it su�ces to show that every open ball,
B(p; �), contains a point q on some photo-consistent shape P such that
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the set VisP(q) contains all cameras in SVis
V�(�p). For if q is photo-

consistent with VisP(q), it follows that q is photo-consistent with any
of its subsets.

We proceed by �rst choosing a photo-consistent shape P and then
constructing the point q (Figs. 12b,c). In particular, let c be a camera
in SVis

V�(�p) that is closest to �p, and let �c be the plane through c

that is parallel to �p. Fix � such that 0 < � < k, where k is the distance
from c to �p.

Let N � B(p; �) be a set that establishes p's strong visibility accord-
ing to De�nition 4. According to the de�nition,N contains an open ball
B(p; �0) for some �0 < �. By the de�nition of the photo hull, there exists
a photo-consistent shape P that intersects B(p; �0).

We now construct point q and consider the set of cameras from
which q is visible. Let q be a point in the set P \ N that minimizes
perpendicular distance to �c.

16 By construction, no point in N \ P
occludes q from the cameras in SVis

V�(�p). Moreover, since q 2 N ,
De�nition 4 tells us that no point in P � N can occlude q from the
cameras in SVis

V�(�p). It follows that VisP(q) � SVis
V�(�p). QED

Notes

1 Examples include the use of the small baseline assumption in stereo to simplify
correspondence-�nding and maximize joint visibility of scene points (Kanade et al.,
1996), the availability of easily-detectable image contours in shape-from-contour
reconstruction (Vaillant and Faugeras, 1992), and the assumption that all views are
taken from the same viewpoint in photometric stereo (Woodham et al., 1991).

2 Faugeras (Faugeras, 1998) has recently proposed the termmetameric to describe
such shapes, in analogy with the term's use in the color perception (Alfvin and
Fairchild, 1997) and structure-from-motion literature (van Veen and Werkhoven,
1996).

3 Note that both of these generalizations represent signi�cant improvements in
the state of the art. For instance, silhouette-based algorithms require identi�cation
of silhouettes, fail at surface concavities, and treat only the case of binary images.
While (Seitz and Dyer, 1999; Seitz and Kutulakos, 1998) also used a volumetric
algorithm, their method worked only when the scene was outside the convex hull of
the cameras. This restriction strongly limits the kinds of environments that can be
reconstructed, as discussed in Section 6.

4 More formally, we use the term shape to refer to any closed set V � IR3 for
which every point p 2 V is in�nitesimally close to an open 3-ball inside V. That is,
for every � > 0 there is an open 3-ball, B(p; �), that contains an open 3-ball lying
inside V. Similarly, we de�ne the surface of V to be the set of points in V that are
in�nitesimally close to a point outside V.

5 Note that even points on a radiance discontinuity must have a unique radiance
function assigned to them. For example, in the scene of Fig. 3, the point of transition
between red and blue surface points must be assigned either a red or a blue color.
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6 In the following, we make the simplifying assumption that pixel values in the
image measure scene radiance directly.

7 For example, set radp(~pc) equal to the color at p's projection.
8 Strictly speaking, locally-computable radiance models cannot completely ac-

count for surface normals and other neighborhood-dependent quantities. However,
it is possible to estimate surface normals based purely on radiance information and
thereby approximately model cases where the light source changes (Seitz and Ku-
tulakos, 1998) or when reectance is normal-dependent (Sato et al., 1997). Speci�c
examples include (1) using a mobile camera mounted with a light source to capture
photographs of a scene whose reectance can be expressed in closed form (e.g., using
the Torrance-Sparrow model (Torrance and Sparrow, 1967; Sato et al., 1997)), and
(2) using multiple cameras to capture photographs of an approximately Lambertian
scene under arbitrary unknown illumination (Figure 1).

9 Note that if V = IR3, the problem reduces to the case when no constraints on
free space are available.
10 Our use of the term photo hull to denote the \maximal" photo-consistent shape

de�ned by a collection of photographs is due to a suggestion by Leonard McMillan.
11 Examples include de�ning V to be equal to the visual hull or, in the case of a

camera moving through an environment , IR3 minus a tube along the camera's path.
12 Convergence to this shape is provably guaranteed only for scenes representable

by a discrete set of voxels.
13 Here we make the simplifying assumption that �0 does not vary as a function

of wavelength.
14 For example, the algorithms in (Seitz and Dyer, 1999; Seitz and Kutulakos, 1998)

fail catastrophically for this scene because the distribution of the input views and the
resulting occlusion relationships violate the assumptions used by those algorithms.
15 To see this, note that V� is, by de�nition, a closed subset of IR3. Now observe

that every point p 2 V� is in�nitesimally close to a point on some photo-consistent
shape V 0. It follows that p is in�nitesimally close to an open 3-ball inside V 0 � V�.
The closed photo hull therefore satis�es our de�nition of a shape.
16 Note that such a point does exist since P \ N is a closed and bounded subset

of IR3 and hence it is compact (Armstrong, 1983).
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