
Prof. C. Dyer CS 534: Computational Photography Fall 2011

1

Homework #2: Image Processing in MATLAB

Assigned: Monday, September 19

Due: Friday, September 30

For this assignment you will write several small programs in MATLAB as an introduction to both
MATLAB and some simple image processing operations. For each problem, run your code on
the provided test images given on the homework web page and, optionally, other images of your
own choice. When submitting your homework, please create a folder for each problem. In each

folder include a ‘main_P#.m’ script file (e.g., main_P1.m for the first problem) and several

function M-files. The naming of any auxilliary functions should conform to the same naming
convention. Also, note that it is often a good idea to initially convert integer pixel values after

reading in an input image to floating point (using im2double) before performing any image

operations on it, and then at the end convert the result back to integer values (using uint8)

before saving. All output images should be saved as .jpg files.

1. Histogram Equalization
Histogram equalization is a commonly used image operator for, among other things,
enhancing the contrast in an image. To learn about it, read Section 3.1.4 in the Szeliski
book and Wikipedia at http://en.wikipedia.org/wiki/Histogram_equalization Next, implement
in MATLAB a function that performs histogram equalization by (1) converting an input color

image from RGB to HSV color space (using rgb2hsv), (2) computing the histogram and

cumulative histogram of the V (luminance) image, (3) using the cumulative histogram to

create a new luminance image, V, that has a roughly “flat” histogram, and (4) converting the

HSV image to RGB color space (using hsv2rgb). Information about HSV color space is in

Section 2.3.2 in the Szeliski book. The calling form should be function J = myhisteq(I)

where the function takes a color image array I as input, and outputs a new color image

array J after equalization. Your main_P1.m script file should read an input image file, call

myhisteq, and write the output image as a .jpg file. Also create images of the histograms

of V and V (using imhist). Do not use histeq. Hand in jpg images of the input, output,

and two histograms.

2. Demosaicing

Digital cameras that contain a single image sensor capture a color image by overlaying a
color filter array in front of the image sensor’s pixels. The color filter array is known as a
Bayer pattern that contains red, green and blue filters arranged in 2 x 2 blocks as [R G; G
B]. (In order to get the Bayer pattern of an image, you will need a digital camera that can
save the image in “Raw” format.) The process of converting a raw image into a full color
image consisting of three channels, one for red, green and blue, is called demosaicing.
Read Section 10.3.1 in Szeliski for a brief description. Implement a simple linear
interpolation method for demosaicing, defined as follows: for each pixel in each color
channel, fill in the missing values by averaging either the four or the two nearest neighbors’
values:

http://szeliski.org/Book/
http://szeliski.org/Book/
http://en.wikipedia.org/wiki/Histogram_equalization
http://szeliski.org/Book/
http://szeliski.org/Book/

Prof. C. Dyer CS 534: Computational Photography Fall 2011

2

The output image should be the same size as the input image but with three bands instead

of one. Implement this as function J = demosaic(I) where I is an input mosaic

image and J is an RGB output image. Avoid using loops if possible. Instead use

imfilter. You may not use interp2. Your main_P2.m file should read an image file,

call demosaic, and write the output file as a .jpg image file.

We will provide each test image in both JPEG and Raw formats. The Raw image is stored

as a .bmp or .pgm format image file so that you can easily read its original Bayer Pattern

data using imread.

To evaluate the result image, compute the squared difference between the original and
reconstructed color values for each pixel in each color channel separately, and then add the
three color components together to obtain an output grayscale image. Display it using

imshow and scale the output values so that the maximum value is 255 (i.e., white). Create

a second image that shows a portion where artifacts of demosaicing are visible, and give a

brief explanation (in a README.txt file) of the likely cause of this artifact. Hand in the

result image, difference image, and artifact image as .jpg files.

OPTIONAL: Bill Freeman proposed an improvement to the simple bilinear interpolation
approach. Since the G channel is sampled at a higher rate than the R and B channels, one
would expect interpolation to work better for G values. Then it would make sense to use the
interpolated G channel to modify the interpolated R and B channels. The improved algorithm
begins with linear interpolation applied separately to each channel, just as you have already
done above. The estimated G channel is not changed, but R and B channels are modified
as follows. First, compute the difference images R-G and B-G between the respective
interpolated channels. Mosaicing artifacts tend to show up as small "splotches" in these

images. To eliminate the "splotches", apply median filtering (use the medfilt2 command in

MATLAB) to the R-G and B-G images. Finally, create the modified R and B channels by
adding the G channel to the respective difference images. Implement the demosaicing part

of this algorithm using function J = FreemanDemosaic(I), where I is the Bayer

Pattern image, J is an RGB image.

ATTENTION: Your demosaicing function should accept images with different pixel value

scales. The output image should either be a [0,1] double image or a [0,255] uint8 image.

3. Color Transfer
Color correction is a common image processing operation. One form of this is to modify the
colors of one image based on the colors in a second image. This “color transfer” process is
described in the paper “Color Transfer between Images” by E. Reinhard et al., which is
available in the course Readings. Implement the basic algorithm described there (i.e., just
use the mean and standard deviation of all pixels in the image, and don’t do gamma

http://www.freepatentsonline.com/4663655.html
http://pages.cs.wisc.edu/~dyer/cs534/papers/color-transfer-cga2001.pdf

Prof. C. Dyer CS 534: Computational Photography Fall 2011

3

correction). Useful MATLAB functions include mean2, std2, makecform, and

applycform. Write a function K = mycrtransfer(I, J) to implement the

algorithm, where I is the RGB input source image, J is the reference (target) input image,

and K is the output RGB image. K should either be a [0,1] double image or a [0,255]

uint8 image. Write main_P3.m to read the two input image files, call mycrtranster,

and write the output image file in .jpg format. Hand in the three images as .jpg files.

