
Prof. C. Dyer CS 534: Computational Photography Fall 2011

1

Homework #3: Image Resizing using Seam Carving

Assigned: Monday, October 3

Due: Friday, October 14

In this assignment you will implement and evaluate an algorithm for resizing an image that uses
image content to do this with (hopefully) minimal noticeable distortions. The method is called
Seam Carving. It is implemented in Photoshop as a feature called “content aware scaling.”
First, read the paper “Seam Carving for Content-Aware Image Resizing” by S. Avidan and A.
Shamir, with emphasis on Section 3. Write a main.m script file that reads a given color image
file into MATLAB using imread, converts it to double so that pixels have values in the range
[0..1], calls functions to implement seam carving, and then creates an output jpg image file. To
do this write code to do each of the following steps:

1. Compute the energy function
Implement a function E = imenergy(I) (in a file called imenergy.m) that computes the
energy image E from an RGB image array I as defined in Equation 1 in the paper. You can
use the MATLAB function [DX DY] = gradient(I) to compute the gradient and then
sum the absolute values of DX and DY at each pixel. Since I is a color image, first convert
the image to grayscale (and double) using rgb2gray before computing the gradient. E
should be a double 2D array of the same size as I, with a floating-point value at each entry.

2. Compute the optimal horizontal seam

Implement a function S = horizontal_seam(I) that takes an image and finds the (one)
optimal horizontal seam, returning a vector of length equal to the number of columns in I
such that each entry in vector S is an integer-valued row number indicating which pixel in
that column should be removed. For example, S(10)=37 means that in the 10th column the
pixel in row 37 is to be removed. The optimal seam can be found using dynamic
programming to compute, left to right, the cumulative minimum energy array, M, as
described in the paper. Starting from the minimum value in the rightmost column of M, S is
computed during the backward pass from the rightmost column to the leftmost column of M.
Adjacent entries in S must be at most one row apart so that the seam found is a path of 8-
adjacent pixel coordinates. (Note: you can plot the points in S on top of image I using
imshow, hold on, and plot.) See the Wikipedia page on “seam carving” to see how
dynamic programming works here (though the example shown is for a vertical seam).
NOTE: It is hard to vectorize the dynamic programming algorithm in MATLAB so you are
free to use loops.

3. Remove 1 horizontal seam

Implement a function J = remove_horizontal_seam(I, S) that removes one
horizontal seam from image I (of size m x n) to produce new image J that has size (m-1) x n.

4. Resize

Implement a function J = shrink(I, num_rows_removed, num_cols_removed)
that takes an input color image I and computes an output color image J that has
num_rows_removed fewer rows than I, and num_cols_removed fewer columns than I.
This should find one seam, remove it, find the next seam, remove it, etc. Implement this

http://pages.cs.wisc.edu/~dyer/cs534/papers/AvidanShamir2007-SeamCarving.pdf
http://en.wikipedia.org/wiki/Seam_carving

Prof. C. Dyer CS 534: Computational Photography Fall 2011

2

function using only the horizontal seam detector and remover by (a) removing all horizontal
seams, (b) rotating the image 90° using J = permute(I, [2 1 3]) (do not use
transpose), (c) removing all vertical seams, and (d) un-rotating the image (using J =
permute(I, [2 1 3])). Hence you do not need to implement a separate vertical seam
removal function.

Experiments

1. Using the test image union-terrace.jpg , run your shrink function with the following values

and create three images called E1a.jpg , E1b.jpg and E1c.jpg showing the results
a. num_rows_removed = 0, num_cols_removed = 100
b. num_rows_removed = 100, num_cols_removed = 0
c. num_rows_removed = 100, num_cols_removed = 100

2. Create an image of the energy function output called E2a.jpg and an image called
E2b.jpg of the cumulative minimum energy array M for the first horizontal seam. Use
imagesc and saveas to create these images. Explain why these images look as they do.

3. Create an image called E3.jpg showing the original image together with the first selected
horizontal seam and the first selected vertical seam overlaid. Explain why these are
reasonable optimal seams.

4. Find on the web or take a photo to use as an input image (that is not too big) and name it
E4a.jpg where this image shows an interesting successful result of shrinking (either
horizontally, vertically, or both) an image by some non-trivial amount. Save your result
image as E4b.jpg Hand in both images and describe why it seems to work well.

5. Find on the web or take a photo to use as an input image (that is not too big) and name it
E5a.jpg where this image shows an interesting poor result of shrinking a different image
(either horizontally, vertically, or both) by some non-trivial amount. Save your result image
with the name E5b.jpg Hand in both images and describe why it seems to work poorly.

Extra Credit (up to 10%)

Implement one or more of the following or your own extension. Show and describe results.
Hand in in a separate ExtraCredit folder your code and images.

1. Write a function J = expand(I, num_rows_expanded, num_cols_expanded)
that expands the image by adding horizontal and vertical seams to create an output
image that has num_rows_expanded more rows and num_cols_expanded more
columns.

2. Implement one or more alternate energy functions and compare them experimentally.

