
One of the most common tasks in image
processing is to alter an image’s color.

Often this means removing a dominant and undesirable
color cast, such as the yellow in photos taken under
incandescent illumination. This article describes a
method for a more general form of color correction that
borrows one image’s color characteristics from anoth-
er. Figure 1 shows an example of this process, where we
applied the colors of a sunset photograph to a daytime
computer graphics rendering.

We can imagine many methods
for applying the colors of one image
to another. Our goal is to do so with
a simple algorithm, and our core
strategy is to choose a suitable color
space and then to apply simple oper-
ations there. When a typical three
channel image is represented in any
of the most well-known color
spaces, there will be correlations
between the different channels’ val-
ues. For example, in RGB space,
most pixels will have large values for
the red and green channel if the blue
channel is large. This implies that if
we want to change the appearance
of a pixel’s color in a coherent way,
we must modify all color channels

in tandem. This complicates any color modification
process. What we want is an orthogonal color space
without correlations between the axes.

Recently, Ruderman et al. developed a color space,
called lαβ, which minimizes correlation between chan-
nels for many natural scenes.2 This space is based on
data-driven human perception research that assumes
the human visual system is ideally suited for processing
natural scenes. The authors discovered lαβ color space
in the context of understanding the human visual sys-
tem, and to our knowledge, lαβ space has never been
applied otherwise or compared to other color spaces.
There’s little correlation between the axes in lαβ space,

which lets us apply different operations in different color
channels with some confidence that undesirable cross-
channel artifacts won’t occur. Additionally, this color
space is logarithmic, which means to a first approxima-
tion that uniform changes in channel intensity tend to be
equally detectable.3

Decorrelated color space
Because our goal is to manipulate RGB images, which

are often of unknown phosphor chromaticity, we first
show a reasonable method of converting RGB signals
to Ruderman et al.’s perception-based color space lαβ.
Because lαβ is a transform of LMS cone space, we first
convert the image to LMS space in two steps. The first
is a conversion from RGB to XYZ tristimulus values. This
conversion depends on the phosphors of the monitor
that the image was originally intended to be displayed
on. Because that information is rarely available, we use
a device-independent conversion that maps white in
the chromaticity diagram (CIE xy) to white in RGB
space and vice versa. Because we define white in the
chromaticity diagram as x = X/(X + Y + Z) = 0.333, y
= Y/(X + Y + Z) = 0.333, we need a transform that
maps X = Y = Z = 1 to R = G = B = 1. To achieve this,
we modified the XYZitu601-1 (D65) standard conver-
sion matrix to have rows that add up to 1. The Interna-
tional Telecommunications Union standard matrix is

(1)

By letting Mitux = (111)T and solving for x, we obtain a
vector x that we can use to multiply the columns of
matrix Mitu, yielding the desired RGB to XYZ conversion:

(2)

Compared with Mitu, this normalization procedure con-

  

X
Y
Z

R
G
B

















=
































0 5141 0 3239 0 1604
0 2651 0 6702 0 0641
0 0241 0 1228 0 8444

. . .

. . .

. . .

  

Mitu =
















0 4306 0 3415 0 1784
0 2220 0 7067 0 0713
0 0202 0 1295 0 9394

. . .

. . .

. . .

0272-1716/01/$10.00 © 2001 IEEE

Applied Perception

34 September/October 2001

We use a simple statistical

analysis to impose one

image’s color characteristics

on another. We can achieve

color correction by choosing

an appropriate source image

and apply its characteristic

to another image.

Erik Reinhard, Michael Ashikhmin, Bruce Gooch,
and Peter Shirley 
University of Utah

Color Transfer
between Images



stitutes a small adjustment to the matrix’s values.
Once in device-independent XYZ space, we can con-

vert the image to LMS space using the following
conversion:4

(3)

Combining these two matrices gives the following trans-
formation between RGB and LMS cone space:

(4)

The data in this color space shows a great deal of skew,
which we can largely eliminate by converting the data
to logarithmic space:2

L = log L
M = log M
S = log S (5)

Using an ensemble of spectral images that represents
a good cross-section of naturally occurring images, Rud-
erman et al. proceed to decorrelate these axes. Their
motivation was to better understand the human visual
system, which they assumed would attempt to process
input signals similarly. We can compute maximal decor-
relation between the three axes using principal compo-
nents analysis (PCA), which effectively rotates them.
The three resulting orthogonal principal axes have sim-
ple forms and are close to having integer coefficients.
Moving to those nearby integer coefficients, Ruderman
et al. suggest the following transform:

(6)

If we think of the L channel as red, the M as green, and
the S as blue, we can see that this is a variant of many
opponent-color models:4

Achromatic ∝ r + g + b
Yellow–blue ∝ r + g – b
Red–green ∝ r – g (7)

Thus the l axis represents an achromatic channel,
while the α and β channels are chromatic yellow–blue
and red–green opponent channels. The data in this
space are symmetrical and compact, while we achieve
decorrelation to higher than second order for the set of
natural images tested.2 Flanagan et al.5 mentioned this
color space earlier because, in this color space, the
achromatic axis is orthogonal to the equiluminant

plane. Our color-correction method operates in this lαβ
space because decorrelation lets us treat the three color
channels separately, simplifying the method.

After color processing, which we explain in the next
section, we must transfer the result back to RGB to dis-
play it. For convenience, here are the inverse opera-
tions. We convert from lαβ to LMS using this matrix
multiplication:

(8)
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1 Applying a
sunset to an
ocean view. 
(a) Rendered
image1 (image
courtesy of
Simon Pre-
moze), 
(b) photograph
(image courtesy
of the National
Oceanic and
Atmospheric
Administration
Photo Library),
and 
(c) color-
processed
rendering.



Then, after raising the pixel values to the power ten to
go back to linear space, we can convert the data from
LMS to RGB using

(9)

Statistics and color correction
The goal of our work is to make a synthetic image take

on another image’s look and feel. More formally this
means that we would like some aspects of the distribu-
tion of data points in lαβ space to transfer between
images. For our purposes, the mean and standard devi-
ations along each of the three axes suffice. Thus, we
compute these measures for both the source and target
images. Note that we compute the means and standard
deviations for each axis separately in lαβ space.

First, we subtract the mean from the data points:

(10)

Then, we scale the data points comprising the syn-
thetic image by factors determined by the respective
standard deviations:

(11)

After this transformation, the resulting data points have
standard deviations that conform to the photograph.
Next, instead of adding the averages that we previous-
ly subtracted, we add the averages computed for the
photograph. Finally, we convert the result back to RGB
via log LMS, LMS, and XYZ color spaces using Equations
8 and 9.

Because we assume that we want to transfer one
image’s appearance to another, it’s possible to select
source and target images that don’t work well together.
The result’s quality depends on the images’ similarity in
composition. For example, if the synthetic image con-
tains much grass and the photograph has more sky in it,
then we can expect the transfer of statistics to fail.

We can easily remedy this issue. First, in this exam-
ple, we can select separate swatches of grass and sky
and compute their statistics, leading to two pairs of clus-
ters in lαβ space (one pair for the grass and sky swatch-
es). Then, we convert the whole rendering to lαβ space.
We scale and shift each pixel in the input image accord-
ing to the statistics associated with each of the cluster
pairs. Then, we compute the distance to the center of
each of the source clusters and divide it by the cluster’s
standard deviation σc,s. This division is required to com-
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2 Color correc-
tion in different
color spaces.
From top to
bottom, the
original source
and target
images, fol-
lowed by the
corrected
images using
RGB, lαβ, and
CIECAM97s
color spaces.
(Source image
courtesy of
Oliver Deussen.)



pensate for different cluster sizes. We blend the scaled
and shifted pixels with weights inversely proportional
to these normalized distances, yielding the final color.
This approach naturally extends to images with more
than two clusters. We can devise other metrics to weight
relative contributions of each cluster, but weighting
based on scaled inverse distances is simple and worked
reasonably well in our experiments.

Another possible extension would be to compute
higher moments such as skew and kurtosis, which are
respective measures of the lopsidedness of a distribu-
tion and of the thickness of a distribution’s tails. Impos-
ing such higher moments on a second image would
shape its distribution of pixel values along each axis to
more closely resemble the corresponding distribution
in the first image. While it appears that the mean and
standard deviation alone suffice to produce practical
results, the effect of including higher moments remains
an interesting question.

Results
Figures 1 and 2 showcase the main reason for devel-

oping this technique. The synthetic image and the pho-
tograph have similar compositions, so we can transfer
the photograph’s appearance to the synthetic image.
Figures 3 and 4 give other examples where we show that
fairly dramatic transfers are possible and still produce
believable results. Figure 4 also demonstrates the effec-
tiveness of using small swatches to account for the dis-
similarity in image composition.

Figure 5 (next page) shows that nudging some of the
statistics in the right direction can sometimes make the
result more visually appealing. Directly applying the
method resulted in a corrected image with too much red
in it. Reducing the standard deviation in the red–green
channel by a factor of 10 produced the image in Figure
5c, which more closely resembles the old photograph’s
appearance.
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3 Different
times of day. 
(a) Rendered
image6 (image
courtesy of
Simon Pre-
moze), 
(b) photograph
(courtesy of the
NOAA Photo
Library), and 
(c) corrected
rendering.

(a)

(b)

(c)

4 Using swatches. We applied (a) the atmosphere of Vincent van Gogh’s Cafe Terrace on the Place du Forum, Arles, at
Night (Arles, September 1888, oil on canvas; image from the Vincent van Gogh Gallery, http://www.vangoghgallery.
com) to (b) a photograph of Lednice Castle near Brno in the Czech Republic. (c) We matched the blues of the sky in
both images, the yellows of the cafe and the castle, and the browns of the tables at the cafe and the people at the
castle separately.

(a) (b) (c)



We show that we can use the lαβ color space for hue
correction using the gray world assumption. The idea
behind this is that if we multiply the three RGB chan-
nels by unknown constants cr, cg, and cb, we won’t
change the lαβ channels’ variances, but will change their
means. Thus, manipulating the mean of the two chro-
matic channels achieves hue correction. White is spec-
ified in LMS space as (1, 1, 1), which converts to (0, 0,
0) in lαβ space. Hence, in lαβ space, shifting the aver-
age of the chromatic channels α and β to zero achieves
hue correction. We leave the average for the achromat-
ic channel unchanged, because this would affect the
overall luminance level. The standard deviations should
also remain unaltered.

Figure 6 shows results for a scene rendered using
three different light sources. While this hue correction
method overshoots for the image with the red light
source (because the gray world assumption doesn’t hold
for this image), on the whole it does a credible job on
removing the light source’s influence. Changing the gray
world assumption implies the chromatic α and β aver-
ages should be moved to a location other than (0, 0). By
making that a 2D choice problem, it’s easy to browse
possibilities starting at (0, 0), and Figure 6’s third col-
umn shows the results of this exercise. We hand cali-
brated the images in this column to resemble the results
of Pattanaik et al.’s chromatic adaption algorithm,7

which for the purposes of demonstrating our approach
to hue correction we took as ground truth.

Finally, we showcase a different use of the lαβ space
in the sidebar “Automatically Constructing NPR
Shaders.”

Gamma correction
Note that we haven’t mentioned gamma correction

for any of the images. Because the mean and standard
deviations are manipulated in lαβ space, followed by a
transform back to LMS space, we can obtain the same
results whether or not the LMS colors are first gamma
corrected. This is because log x

γ
= γ log x, so gamma cor-
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(a)

(b)

(c)

5 (a) Rendered
forest (image
courtesy of
Oliver Deussen);
(b) old photo-
graph of a tuna
processing
plant at Sancti
Petri, referred
to as El Bosque,
or the forest
(image courtesy
of the NOAA
Photo Library);
and (c) correct-
ed rendering.

6 Color correction. Top to bottom:
renderings using red, tungsten, and
blue light sources. Left to right:
original image, corrected using gray
world assumption in lαβ space. The
averages were browsed to more
closely resemble Pattanaik’s color
correction results.7 (Images cour-
tesy of Mark Fairchild.)



rection is invariant to shifing and scaling in logarithmic
lαβ space.

Although gamma correction isn’t invariant to a trans-
form from RGB to LMS, a partial effect occurs because
the LMS axes aren’t far from the RGB axes. In our expe-
rience, failing to linearize the RGB images results in
approximately a 1 or 2 percent difference in result. Thus,
in practice, we can often ignore gamma correction,
which is beneficial because source images tend to be of
unknown gamma value.

Color spaces
To show the significance of choosing the right color

space, we compared three different color spaces. The
three color spaces are RGB as used by most graphics
algorithms, CIECAM97s, and lαβ. We chose the
CIECAM97s color space because it closely relates to the
lαβ color space. Its transformation matrix to convert
from LMS to CIECAM97s7 is

This equation shows that the two chromatic channels
C1 and C2 resemble the chromatic channels in lαβ space,

bar a scaling of the axes. The achromatic channel is dif-
ferent (see Equation 6). Another difference is that
CIECAM97s operates in linear space, and lαβ is defined
in log space.

Using Figure 2’s target image, we produced scatter
plots of 2,000 randomly chosen data points in lαβ, RGB,
and CIECAM97s. Figure 7 (next page) depicts these scat-
ter plots that show three pairs of axes plotted against each
other. The data points are decorrelated if the data are axis
aligned, which is the case for all three pairs of axes in both
lαβ and CIECAM97s spaces. The RGB color space shows
almost complete correlation between all pairs of axes
because the data cluster around a line with a 45-degree
slope. The amount of correlation and decorrelation in
Figure 7 is characteristic for all the images that we tried.
This provides some validation for Ruderman et al.’s color
space because we’re using different input data.

Although we obtained the results in this article in lαβ
color space, we can also assess the choice of color space
on our color correction algorithm. We expect that color
spaces similar to lαβ space result in similar color cor-
rections. The CIECAM97s space, which has similar chro-
matic channels, but with a different definition of the
luminance channel, should especially result in similar
images (perhaps with the exception of overall lumi-
nance). The most important difference is that
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To approximate an object’s material properties,
we can also apply gleaning color statistics from
image swatches to automatically generating
nonphotorealistic shading (NPR) models in the
style of Gooch et al.1 Figure A shows an example
of a shading model that approximates artistically
rendered human skin.

Gooch’s method uses a base color for each
separate region of the model and a global cool
and warm color. Based on the surface normal,
they implement shaders by interpolating between
the cool and the warm color with the regions’
base colors as intermediate control points. The
original method requires users to select base,
warm, and cool colors, which they perform in YIQ
space. Unfortunately, it’s easy to select a
combination of colors that yields poor results such
as objects that appear to be lit by a myriad of
differently colored lights.

Rademacher2 extended this method by shading
different regions of an object using different sets of
base, cool, and warm colors. This solution can
produce more pleasing results at the cost of even
more user intervention.

Using our color statistics method, it’s possible to
automate the process of choosing base colors. In
Figure A, we selected a swatch containing an
appropriate gradient of skin tones from Lena’s
back.3 Based on the swatch’s color statistics, we
implemented a shader that takes the average of

the swatch as base color and
interpolates along the α axis in
lαβ space between +σα

t and −σα
t.

We chose interpolation along the
α axis because a yellow–blue
gradient occurs often in nature
due to the sun and sky. We
limited the range to one standard
deviation to avoid excessive blue
and yellow shifts.

Because user intervention is
now limited to choosing an
appropriate swatch, creating
proper NPR shading models is
now straightforward and
produces credible results, as
Figure A shows.

References
1. A. Gooch et al., “A Non-Photore-

alistic Lighting Model for Automat-
ic Technical Illustration,” Computer
Graphics (Proc. Siggraph 98), ACM Press, New York,
1998, pp. 447-452.

2. P. Rademacher, “View-Dependent Geometry,” Proc. Sig-
graph 99, ACM Press, New York, 1999, pp. 439-446.

3. L. Soderberg, centerfold, Playboy, vol. 19, no. 11, Nov.
1972.

A An example of an automatically
generated NPR shader. An image
of a 3D model of Michaelanglo’s
David shaded with an automatical-
ly generated skin shader generat-
ed from the full-size Lena image.3

Automatically Constructing NPR Shaders



CIECAM97s isn’t logarithmic. Figure 2 shows the results.
Color correction in lαβ space produces a plausible result
for the given source and target images. Using
CIECAM97s space also produces reasonable results, but
the image is more strongly desaturated than in lαβ
space. It doesn’t preserve the flowers’ colors in the field

very well. Using RGB color space doesn’t improve the
image at all. This result reinforces the notion that the
proper choice of color space is important.

Conclusions
This article demonstrates that a color space with

decorrelated axes is a useful tool for manipulating color
images. Imposing mean and standard deviation onto the
data points is a simple operation, which produces believ-
able output images given suitable input images. Appli-
cations of this work range from subtle postprocessing
on images to improve their appearance to more dramatic
alterations, such as converting a daylight image into a
night scene. We can use the range of colors measured in
photographs to restrict the color selection to ones that
are likely to occur in nature. This method’s simplicity
lets us implement it as plug-ins for various commercial
graphics packages. Finally, we foresee that researchers
can successfully use lαβ color space for other tasks such
as color quantization. �
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7 Scatter plots made in (a) RGB, (b) lαβ, and (c)
CIECAM97s color spaces. The image we used here is the
target image of Figure 2. Note that the degree of corre-
lation in these plots is defined by the angle of rotation
of the mean axis of the point clouds, rotations of
around 0 or 90 degrees indicate uncorrelated data, and
in between values indicate various degrees of correla-
tion. The data in lαβ space is more compressed than in
the other color spaces because it’s defined in log space.

(a)

(b)

(c)
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