Midterm Examination CS 534: Computational Photography

November 3, 2015

Problem	Score	Max Score
1		8
2		8
3		9
4		4
5		3
6		4
7		6
8		13
9		7
10		4
11		7
12		10
13		9
14		8
Total		100

1.	brightness value) in a photograph?
2.	[8] Fill in each of the following blanks with one of "smaller," "larger," or "same."
	(a) [2] The smaller the f-number of a lens, the the depth of field.
	(b) [2] The shorter the focal length of a lens, the the depth of field.
	(c) [2] The closer the distance to the object in focus, the the depth of field.
	(d) [2] The faster the shutter speed, the the depth of field.
3.	[9] Say I have a camera with lens focal length of 40mm, aperture f-number f/5.6, shutter speed 1/500 second, and ISO value 200.(a) [3] What is the diameter of the lens (in mm)?
	(a) [5] What is the diameter of the lens (in min)?(b) [3] What shutter speed should I use to obtain the same exposure in a second photo using f/11 instead of f/5.6?
	(c) [3] What shutter speed should I use to obtain the <i>same exposure</i> in a second photo using ISO 400 instead of 200?

4.	[4] Given a pinhole camera with focal length 60, what are the image coordinates of the 3D scene point at coordinates (100, 200, 400)?
5.	[3] Does the thin lens formula apply to a pinhole camera for determining which scene points are in focus and which are not? Briefly explain why or why not.
6.	[4] If I double the focal length of a camera lens and also move twice as far away from an object I focus on in a scene, what are <i>two</i> (2) things that will be different in the two images?
7.	[6] What property of the coefficients of a discrete approximation of a Gaussian filter ensures that (a) [3] regions of uniform intensity are unchanged by smoothing using this filter?
	(b) [3] the amount of smoothing does <i>not</i> depend on orientation of objects in the image?

8. [13] Laplacian

(a) [3] Define a 3 x 3 linear filter that can be used as an approximation of the **Laplacian** of an image f(x, y), i.e., $\nabla^2 f = (\partial^2 f/\partial x^2) + (\partial^2 f/\partial y^2)$

(b) [3] How can this filter be used to detect **edges** in an image? That is, specify how to create a binary edge image where a pixel's value is 1 if it is at an edge, and 0 otherwise.

(c) [3] How can this filter be used to "sharpen" an image by unsharp masking?

(d) [4] Describe the main steps to compute a **2-level Laplacian pyramid** from an input image. Use a figure to aid your explanation, if desired.

- 9. [7] Say you want to **warp** an image, *I*, into a new one, *J*, by rotating *I* 45° about the origin of the image. This transformation can be described by the mapping from *I*'s (u, v) coordinates to J's (x, y) coordinates as: $x = u \cos \theta + v \sin \theta$ and $y = -u \sin \theta + v \cos \theta$
 - (a) [4] If pixels in image I are all 0s except five 1s at coordinates (0, 0), (1, 1), (2, 2), (3, 3), and (4, 4) (i.e., a diagonal line of five pixels), what is the resulting image J after 45° rotation of just the five "1" pixels in I using the above transformation and using 0-order (nearest neighbor) interpolation? Use $\cos 45^{\circ} = \sin 45^{\circ} = 0.7$.

(b) [3] What problem(s) does this example demonstrate?

10. [4] Use **bilinear interpolation** to compute the intensity value at point (10.2, 4.5) assuming the four nearest neighbor pixels have the following intensity values: (10, 4) has value 22, (11, 4) has value 42, (10, 5) has value 40, and (11, 5) has value 25.

- 11. [7] Compute
 - (a) [4] the **gradient** at the central pixel of the image:

1	3	10
2	4	11
3	5	12

using the two first derivative (Sobel) filters in the x and y directions, respectively:

-1	0	1
-2	0	2
-1	0	1

1	2	1
0	0	0
-1	-2	-1

(b) [3] the **gradient magnitude** at this same pixel.

d

13. [9] **Texture Synthesis**

- (a) [6] The **Image Quilting** algorithm for texture synthesis iteratively selects and adds texture blocks to a partially-defined output texture image.
 - (i) [3] How is a new block selected to add at each iteration?

(ii) [3] How are seams between adjacent blocks "hidden"?

(b) [3] What additional property/term does the **Criminisi best-first filling algorithm** include to improve on the Image Quilting algorithm? Describe qualitatively; no equation(s) required.

14. [8] SIFT Descriptor
(a) [3] How is the SIFT descriptor made 2D orientation invariant?
(1) [0] [0]

(b) [3] Describe how the histogram(s) is (are) constructed for use in the descriptor.

(c) [2] What are the features contained in the descriptor's feature vector?