
CS 534 Computational Photography Fall 2016

1

Homework #2: Image Processing in MATLAB

Assigned: Friday, September 16

Due: Tuesday, September 27

For this assignment you are to write several small programs in MATLAB as an introduction to
both MATLAB and image processing. For each problem, run your code on the provided test
images given on the homework web page and, optionally, other images of your choice. When
submitting your homework, create a folder for each problem, calling them P1, P2 and P3. In
each folder include a ‘main_P#.m’ script file (e.g., main_P1.m for the first problem) and several
function M-files. The naming of any auxiliary functions should conform to the same naming
convention. Note that it is often a good idea to initially convert integer pixel values after reading
in an input image to floating point (using im2double) before performing any image operations,
and then at the end convert the result image back to integer values (using uint8) before saving.
All output images should be saved as .jpg files. Put all three folders together in a single zip
file called <NetID username>-HW2.zip and submit this one file to Moodle.

1. Histogram Equalization

Histogram equalization is a commonly used image operator for enhancing the contrast in an
image. To learn about it, read Section 3.1.4 in the Szeliski book and Wikipedia at
http://en.wikipedia.org/wiki/Histogram_equalization Next, implement in MATLAB a function
that performs histogram equalization by (1) converting an input color image from RGB to
HSV color space (using rgb2hsv which creates a double image), (2) computing the
histogram and cumulative histogram of the V (luminance) image only, (3) transforming the
intensity values in V to occupy the full range 0..255 in a new image W so that the histogram
of W is roughly “flat,” and (4) combining the original H and S channels with the W image to
create a new color image, which is then converted to an RGB color output image (using
hsv2rgb). Information about HSV color space is given in Section 2.3.2 in the Szeliski book.
The calling form should be function J = myhisteq(I) where the function takes a color
image array I as input, and outputs a new color image array J after equalization. Careful
with image types: uint8 arrays contain integer values between 0 and 255, whereas
double arrays contain floating point values between 0 and 1. Converting between types
automatically rescales their values.

Your main_P1.m script file should read an input image file, call myhisteq, and write the
output image as a .jpg file. So, it should look like: clear; img = imread(‘P1-
bridge.jpg’); out = myhisteq(img); imwrite(out, ‘P-bridge-out.jpg’)
You can hard-code the names of each input image and output image file pair you use. Also
create images of the histograms of V and W (using imhist applied to V and W, not the
histogram arrays you generate). Do not use histeq or hist. You may use imhist and
cumsum. Turn in jpg images for each output image, and its two histograms. Step 3 should
be implemented as W(i,j) = max(0, ((256/total number of pixels in V) * c(V(i,j))) -1) where
cumulative histogram c is computed by c(z) = ∑j=0..z h(j), and histogram h is computed by h(z)
= number of pixels in V with intensity z, where z is an integer in the range 0 to 255. Note:
To compute c and h, V must contain discrete, integer values in the range 0… 255; use the
function im2uint8 to convert V. To do step 4, you can simply do: img(:,:,3) = W; J
= hsv2rgb(img) Submit your output RGB images and histogram images, named P1-
bridge-out.jpg, P1-snow-out.jpg, P1-bridge-Vhist.jpg, P1-bridge-
Whist.jpg, P1-snow-Vhist.jpg and P1-snow-Whist.jpg

http://szeliski.org/Book/
http://en.wikipedia.org/wiki/Histogram_equalization
http://szeliski.org/Book/

CS 534 Computational Photography Fall 2016

2

2. Demosaicing

Digital cameras that contain a single image sensor capture a color image by overlaying a
color filter array in front of the image sensor’s pixels. The color filter array is known as a
Bayer pattern that contains red, green and blue filters arranged in 2 x 2 blocks as [R G; G B]
starting from the upper-left corner of the image. So, the upper-left corner pixel in an image
at coordinates (1,1) is assumed to be a red pixel. The process of converting a raw image
into a full color image consisting of three channels, one for red, green and blue, is called
demosaicing. Read Section 10.3.1 in Szeliski for a brief description. Implement a simple
linear interpolation method for demosaicing, defined as follows: for each pixel in each color
channel, fill in the missing values by averaging either the four or the two nearest neighbors’
values:

The output image should be the same size as the input image but with three channels
instead of one. Implement this as function J = mydemosaic(I) where I is an input
mosaic image (input as a .bmp image file) and J is an RGB output image. Avoid using
loops if possible. Instead use imfilter. (You may find it easiest to use several “filters,”
one, for example, for averaging the two horizontally-adjacent pixels in the G channel image
at each missing pixel’s coordinates, and another one for averaging the two vertically-
adjacent pixels in the G channel image at each missing pixel’s coordinates; then combine
the two results.) You may not use interp2 or demosaic. Your main_P2.m file should
read an image file, call mydemosaic, and write the output file as a .jpg image file,
preferably without any user interaction by hardcoding the file names into main_P2.m For
example, do something like: img1 = imread(‘P2-union-raw.bmp’); J1 =
mydemosaic(img1); imwrite(J1, ‘P2-union-demosaic.jpg’, ‘jpg’);

We will provide each test image in both JPEG and Raw formats. The Raw image is stored
as a .bmp format image file (containing a single 2D array) so that you can read the original
2D data using imread. The provided JPEG image contains the RGB image produced in
the camera by the vendor’s demosaicing software so that you can compare your results
with theirs.

To evaluate each result image, create an “error” image by computing at each pixel the
squared difference between the provided .jpg image and the demosaiced image you
produced for each color channel separately, and then adding the three numbers together to
obtain a value for that pixel in the “error” image (stored as a grayscale, not color image).
Display it using imshow and scale the output values so that the maximum value is 255 (i.e.,
white). Most of this image will be black meaning there is little or no error at those pixels.
Find a region in one of your test images where artifacts of demosaicing are visible, and crop
that region out manually into a new “artifact” image. Save that small image and give a brief
explanation (in a README.txt file) of the likely cause of this artifact. Hand in the result
images in .jpg files called P2-crayons-demosaic.jpg and P2-union-

http://szeliski.org/Book/

CS 534 Computational Photography Fall 2016

3

demosaic.jpg, error images called P2-crayons-error.jpg and P2-union-
error.jpg, and one artifact image called P2- artifact.jpg (corresponding to a region
in either one of the two test images).

Note: Your demosaicing function should accept images with different pixel value scales.
The output image should either be a [0,1] double image or a [0,255] uint8 image.

EXTRA CREDIT: Bill Freeman proposed an improvement to the simple bilinear interpolation
approach. Since the G channel is sampled at a higher rate than the R and B channels, one
would expect interpolation to work better for G values. Then it would make sense to use the
interpolated G channel to modify the interpolated R and B channels. The improved algorithm
begins with linear interpolation applied separately to each channel, just as you have already
done above. The estimated G channel is not changed, but R and B channels are modified
as follows. First, compute the difference images R-G and B-G between the respective
interpolated channels. Mosaicing artifacts tend to show up as small "splotches" in these
images. To eliminate the "splotches", apply median filtering (use the medfilt2 command in
MATLAB) to the R-G and B-G images. Finally, create the modified R and B channels by
adding the G channel to the respective difference images. Implement the demosaicing part
of this algorithm using function J = FreemanDemosaic(I), where I is the Bayer
Pattern image, J is an RGB image.

3. Color Transfer

Color correction is a common image processing operation. One form of this is to modify the
colors of one image based on the colors in a second image. This “color transfer” process is
described in the paper “Color Transfer between Images” by E. Reinhard et al., which is
available in the course Readings (focus on the section “Statistics and color correction”).
Implement the basic algorithm described there (i.e., just use the mean and standard
deviation of all pixels in the image, and don’t do gamma correction). Useful MATLAB
functions include mean2 and std2. Convert images between RGB and L*a*b* color spaces
using the MATLAB functions rgb2lab and lab2rgb. Write a function K =
mycolortransfer(I, J) to implement the algorithm, where I is the RGB input source
image (i.e., the one you want to change), J is the palette (target) input image (i.e., the image
you want to steal the colors from), and K is the output RGB image. K should either be a [0,1]
double image or a [0,255] uint8 image. Write main_P3.m to read two input image files,
call mycolortransfer, and write the output image as an RGB .jpg file. To compute the
ratio of standard deviations, use something like: L_out = (std-dev_L_target / std-
dev_L_source)(L_source – mean_L_source) + mean_L_target where
L_source is the L channel after converting the source input image to Lab color space,
std-dev_L_source is the standard deviation of all the values in the 2D matrix L_source,
and L_out is the L channel for the output image. Similarly, compute A_out and B_out.
Then combine these three into a 3D matrix and convert back to RGB. Run your code on the
provided test image pair called P3-source.jpg and P3-target.jpg to create an output
image called P3-out.jpg As a second test, find your own pair of input images, call them
P3-mysource.jpg and P3-mytarget.jpg and create their output image called P3-
myout.jpg Hand in these three images as well as the image P3-out.jpg

http://www.freepatentsonline.com/4663655.html
http://pages.cs.wisc.edu/%7Edyer/cs534/papers/color-transfer-cga2001.pdf

