Prof. C. Dyer CS 534: Computational Photography Fall 2015

Homework #2: Image Processing in MATLAB

Assigned: Wednesday, September 16
Due: Friday, September 25

For this assignment you will write several small programs in MATLAB as an introduction to both
MATLAB and some simple image processing operations.

Implementation tip: it is often a good idea to initially convert integer pixel values after reading in
an input image to floating point (using im2double) before performing any image operations on it,
and then at the end convert the result back to integer values (using im2uint8) before saving.

A Word On Vectorization

P1 and P2 have each been designed to provide examples of vectorized code, in addition to
performing an image processing task. Your job in these two problems is just to understand what
the code is trying to do and fill in arguments to function calls. However, you should also spend
some time to study how the provided code achieves vectorization.

As discussed in class, vectorized code does computation using matrices or vectors as the
building blocks, as opposed to computation with individual elements as building blocks. Such
code tends to not only run more quickly but is generally also more readable. You are highly
encouraged to write vectorized code throughout this course, although this is not necessary to
get a full grade.

P1. Pencil Sketch Effect

In this problem, you will complete the provided code which creates a pencil sketch interpretation
of the input image. Like other effects found in image-editing and photo-sharing apps, this effect
uses the filtering operation.

The pencil sketch effect can be achieved by the following algorithm:

Given: A grayscale image I, of intensity between 0 and 1.

Return: A grayscale image /,,,of intensity between 0 and 1./_,,is a pencil sketch interpretation

of 7,,.
1. 1, < blur(,)
2. Forallx,ycoordinates in 1,,, do: 1,,,(x,y) < 1,,(x,) / 1, (x,)
3. Forallx,ycoordinatesin 7,,,, set 1, (x,y)=1if I_,(x,y)>1.
4. Return /,,,.

Prof. C. Dyer CS 534: Computational Photography Fall 2015

Step 1 can be done with the helper MATLAB function imgaussfilt but we use the more generic
imfilter function in the provided code as it is useful for a wide variety of image processing tasks
(see Problem 4).

The following is the display of the completed code processing another input image.

Input image Pencil sketch

¥

Replace all occurrences of place_arg_here in the code provided with the correct function
arguments.

P2. Bug Eyes

In this problem, you will complete the provided code which creates a bug-eyed version of a
given portrait image. You will learn about a spatial transformation technique known as inverse
mapping and related MATLAB functions meshgrid and interp2. Understanding inverse
mapping will come in handy in a future homework assignment.

Meshgrid
meshgrid is a commonly used function that defines the x-y coordinates of a rectangular grid.

For instance, recall that the equation that defines a circle is given by (x —x.)* + (y — y,)* = where

x and y define the circumference of the circle, x -y, is the center of the circle and r is the radius
of the circle. Knowing this, we can easily draw a filled circle using meshgrid like so:

height = 100;
[x, y] = meshgrid(l:height, 1l:height);
im circle = (x - height/2).”2 + (y - height/2).”2 < (height / 4)"2;

imshow (im circle);

Prof. C. Dyer CS 534: Computational Photography Fall 2015

Inverse mapping

To spatially transform an image, we have to somehow express the relationship between the
pixel locations of the input and output images. One approach is to answer the question, "For
every pixel location in the input image, what is its corresponding location in the oufput image?"
This approach is known as forward mapping. Forward mapping works well for simple
transformations like translation, but often leaves "holes" in the output image under more
complex transformations. Another approach is to answer the question, "For every pixel location
in the output image, what is its corresponding location in the input image?" This is known as
inverse mapping, which we'll use to achieve the bug eye effect.

Inverse mapping requires a function that maps a pixel location in the output image to a (not
necessarily integer-valued) location in the input image. We will use the function

T(rp) = 8*7yy,
Where:
e . is the distance between the output pixel location and the center of the eye
e T(r,) ak.ar,is the distance between the input's pixel location and the center of the eye
e sis some value between 0 and 1 that scales r,,. ris short for 'radius’.
Intuitively, we want to enlarge the eye; therefore, we want to map r,, to some value smaller
than r,,. This explains why s is smaller than or equal to 1. Furthermore, we want this bulging
effect to be limited to the eye area. This requirement suggests that s should be a function of r,
and more specifically, s should be at least close to 1 for large values of r,,. With these
constraints in mind, we define s as

ut?

ut*

s(ry,) =1/[1+exp(b(c—dr,,))]

where b, ¢, d are hand-tuned constants, and exp(x) is just a more readable equivalent of €*. This
particular choice of s is somewhat arbitrary but suffice to say, it meets the needs of our problem.
Other choices of s would be similarly effective.

Bug eye algorithm

With these functions defined, the bug eye effect can then be done as follows:

3

Prof. C. Dyer CS 534: Computational Photography Fall 2015

Given: An image /, of a person and x-y coordinates x -y, of the center of an eye
Return: An image |/, of the person with a bug-like eye. /,, and / , are of the same size.
1. Define the x-y pixel coordinates x -y, of the output image using meshgrid
2. Compute the x-y pixel coordinates x,,-y,, of the input image for each x -y, using
transformation function T.
3. Compute the intensities of /,, at locations X, -y,,, using interp2, which returns / .
4. Return /.

Replace all occurrences of place_arg_here in the code provided with the correct function
arguments. You may find it helpful to read the MATLAB documentation for meshgrid and
interp2. In this problem, all these arguments are just variable names, e.g, x_out.

A possible extension: In this problem, we've made just one eye bug-like for the sake of
simplicity. It isn't difficult to extend the algorithm to make it work for two bug eyes. Just repeat
step 2 for the other eye and average the x,, and y, coordinates. You'll get an effect like the

following. This extension is not required for this assignment.

Input image QOutput image

Another possible extension: Notice that in the skeleton code we've hardcoded the locations of
the eyes and the parameters to the inverse mapping function. Alternatively, we could automate
these steps with an algorithm to detect the location and possibly the size of the eyes in the input
image.

A note on Cartesian coordinate conventions: It's useful to be aware of two somewhat conflicting
conventions when writing image processing scripts in MATLAB. On the one hand, the first and
second dimensions of a MATLAB matrix are the vertical and horizontal axes respectively; on the
other hand, when we say "x-y coordinates"” in image processing parlance, the x and y almost
always refer to the coordinates in the horizontal and vertical axes respectively. For example, the
intensity at the x-y coordinates (2, 3) of a MATLAB matrix imis im (3, 2) ratherthan im (2,
3). As another example, the MATLAB documentation of meshgrid refers to output variables
[X, Y], where the first and second output variables vary in the second (i.e., horizontal) and
first (i.e., vertical) dimensions respectively. Keep these conventions in mind.

Prof. C. Dyer CS 534: Computational Photography Fall 2015

P3. Histogram Equalization

Histogram equalization is a commonly used image operator for enhancing the contrast in an
image. To learn about it, read Section 3.1.4 in the Szeliski book and Wikipedia at
http://en.wikipedia.org/wiki/Histogram_equalization Next, implement in MATLAB a function that
performs histogram equalization by (1) converting an input color image from RGB to HSV color
space (using rgb2hsv), (2) computing the histogram and cumulative histogram of the V
(luminance) image only, (3) transform the intensity values in V to occupy the full range 0..255 in
a new image W so that the histogram of W is roughly “flat,” and (4) combining the original H and
S channels with the W image to create a new color image, which is then converted to an RGB
color output image (using hsv2rgb). Information about HSV color space is given in Section
2.3.2 in the Szeliski book. The calling form should be function J = myhisteqg(I) where
the function takes a color image array I as input, and outputs a new color image array J after
equalization.

Your main_ P3.m script file should read an input image file, call myhisteq, and write the output
image as a . jpg file. So, it should look like: clear; img = imread(‘P3-bridge.jpg’);
out = myhisteq(img); imwrite (out, ‘P3-bridge-out.jpg’) You can hard-code
the names of each input image and output image file pair you use. Also create images of the
histograms of V and W (using imhist applied to V and W, not the histogram arrays you
generate). Do notuse histeqg or hist. Turnin jpg images for each output image, and its
two histograms. Step 3 should be implemented as W(i,j) = max(0, ((256/total number of pixels in

V) * ¢(VW(i,j))) -1) where cumulative histogram c is computed by ¢(z) = ZFO--Z h(j), and histogram h
is computed by h(z) = number of pixels in V with intensity z, where z is an integer in the range 0
to 255. Note: To compute ¢ and h, V must contain discrete, integer values in the range O...
255; use the function uint8 to convert V. To do step 4, you can simply do: img(:,:,3) =
W; J = hsv2rgb (img) Submit your output RGB images and histogram images. See hand-in

instructions for naming conventions.

P4. Demosaicing

Digital cameras that contain a single image sensor capture a color image by overlaying a color
filter array in front of the image sensor’s pixels. The color filter array is known as a Bayer
pattern that contains red, green and blue filters arranged in 2 x 2 blocks as [R G; G B] starting
from the upper-left corner of the image. So, the upper-left corner pixel in an image at
coordinates (1,1) is assumed to be a red pixel. The process of converting a raw image into a full
color image consisting of three channels, one for red, green and blue, is called demosaicing.
Read Section 10.3.1 in Szeliski for a brief description. Implement a simple linear interpolation
method for demosaicing, defined as follows: for each pixel in each color channel, fill in the
missing values by averaging either the four or the two nearest neighbors’ values:

http://szeliski.org/Book/
http://en.wikipedia.org/wiki/Histogram_equalization
http://szeliski.org/Book/
http://szeliski.org/Book/

Prof. C. Dyer CS 534: Computational Photography Fall 2015

? 7 7 ?

9 9 2
? B ? ? 7
KA 2
? i ? ? ?

The output image should be the same size as the input image but with three channels instead of
one. Implement this as function J = mydemosaic (I) where I is an input mosaic image
(input as a .bmp image file) and J is an RGB output image. Avoid using loops if possible.
Instead use imfilter. (You may find it easiest to use several “filters,” one, for example, for
averaging the two horizontally-adjacent pixels in the G channel image at each missing pixel’s
coordinates, and another one for averaging the two vertically-adjacent pixels in the G channel
image at each missing pixel's coordinates; then combine the two results.) You may not use
interp2 or demosaic. Yourmain P4.m file should read an image file, call mydemosaic,
and write the output file as a . jpg image file, preferably without any user interaction by
hardcoding the file names intomain P4.m For example, do something like: imgl =
imread (‘P4-union-raw.bmp’); Jl = mydemosaic(imgl); imwrite (J1,
‘Pd-union-demosaic.jpg’, ‘Jjpg’):;

We will provide each test image in both JPEG and Raw formats. The Raw image is stored as a

. bmp format image file (containing a single 2D array) so that you can read the original 2D
sensor data using imread. The provided JPEG image contains the RGB image produced in the
camera by the vendor’s demosaicing software so that you can compare your results with theirs.

To evaluate each result image, create an “error” image by computing at each pixel the squared
difference between the provided . jpg image and the demosaiced image you produced for each
color channel separately, and then adding the three numbers together to obtain a value for that
pixel in the “error” image (stored as a grayscale, not color image). Display it using imshow and
scale the output values so that the maximum value is 255 (i.e., white). Most of this image will be
black meaning there is little or no error at those pixels. Find a region in one of your test images
where artifacts of demosaicing are visible, and crop that region out manually into a new “artifact”
image. Save that small image and give a brief explanation (in a README . txt file) of the likely
cause of this artifact. Hand in the two result images, two error images and one artifact image
(corresponding to a region in either one of the two test images). See hand-in instructions for
naming convention.

Note: Your demosaicing function should accept images with different pixel value scales. The
output image should either be a [0,1] double image or a [0,255] uint8 image.

EXTRA CREDIT: Bill Freeman proposed an improvement to the simple bilinear interpolation
approach. Since the G channel is sampled at a higher rate than the R and B channels, one
would expect interpolation to work better for G values. Then it would make sense to use the
interpolated G channel to modify the interpolated R and B channels. The improved algorithm
begins with linear interpolation applied separately to each channel, just as you have already

6

http://www.freepatentsonline.com/4663655.html

Prof. C. Dyer CS 534: Computational Photography Fall 2015

done above. The estimated G channel is not changed, but R and B channels are modified as
follows. First, compute the difference images R-G and B-G between the respective interpolated
channels. Mosaicing artifacts tend to show up as small "splotches" in these images. To eliminate
the "splotches", apply median filtering (use the medfilt2 command in MATLAB) to the R-G
and B-G images. Finally, create the modified R and B channels by adding the G channel to the
respective difference images. Implement the demosaicing part of this algorithm using
function J = FreemanDemosaic (I), where I isthe Bayer Pattern image, J is an RGB
image.

P5. Color Transfer

Color correction is a common image processing operation. One form of this is to modify the
colors of one image based on the colors in a second image. This “color transfer” process is
described in the paper “Color Transfer between Images” by E. Reinhard et al., which is available
in the course Readings (focus on the section “Statistics and color correction”). Implement the
basic algorithm described there (i.e., just use the mean and standard deviation of all pixels in the
image, and don’t do gamma correction). Useful MATLAB functions include mean2 and std2.
Convert images between RGB and L*a*b* color spaces using the MATLAB functions rgb21ab
and lab2rgb. Write a function K = mycolortransfer (I, J) toimplementthe
algorithm, where T is the RGB input source image (i.e., the one you want to change), J is the
palette (target) input image (i.e., the image you want to steal the colors from), and x is the output
RGB image. K should either be a [0,1] double image or a [0,255] uint8 image. Write

main P5.m to read two input image files, call mycolortransfer, and write the output image
as an RGB .jpg file. To compute the ratio of standard deviations, use something like: L out
= (std-dev_ L target / std-dev_L source) (L source - mean L source) +
mean L target whereL source is the L channel after converting the source input image
to Lab color space, std-dev_L source is the standard deviation of all the values in the 2D
matrix L_source, and L_out is the L channel for the output image. Similarly, compute A out
and B_out. Then combine these three into a 3D matrix and convert back to RGB. Run your
code on the provided test image pair called P5-source.jpg and P5-target. jpg to create
an output image. As a second test, find your own pair of source and target images and create
their output image. Hand in these three images as well as the output of the test image pair.

Hand-In Instructions

Your submission should have the following directory structure:
e Pl
© main Pl.m
e P2
© main P2.m
e P3
main P3.m
myhisteqg.m
P3-bridge-out.jpg
P3-bridge-Vhist. jpg
P3-bridge-Whist.jpg
P3-snow-out. jpg
P3-snow-Vhist.jpg
P3-snow-Whist. jpg

O O 0O 0 0O O O O

http://pages.cs.wisc.edu/~dyer/cs534/papers/color-transfer-cga2001.pdf

Prof. C. Dyer CS 534: Computational Photography

e P4

main P4.m

mydemosaic.m
P4-crayons—-demosaic.jpg
P4-union-demosaic. jpg
P4-crayons—-error.jpg
P4-union-error.jpg
Pd-artifact.jpg

README. txt

O O O 0 0O O O O

main P5.m
mycolortransfer.m
P5-out.jpg
PS-mysource.jpg
PS5-mytarget.jpg
P5-myout. jpg

O O O O O O

Fall 2015

e Any additional scripts or functions that you wrote, placed in the appropriate folder. Files
that belong to the extra credit task can be placed ina P3_extra credit folder at the

same directory level as the rest of the folders.

Zip all the above into a single zip file called <your wisc username>-HW2.zip and submit

this one file to Moodle.

You do not have to submit transformRadially.m or the test images that we provided.

Acknowledgements

pencil sketch from book
bug eye from website

