
CS 534 Computational Photography Fall 2016

1

Homework #3: Image Resizing using Seam Carving

Assigned: Thursday, September 29

Due: Tuesday, October 11

In this assignment you are to implement and evaluate an algorithm for resizing an image that
uses image content to do this with (hopefully) minimal noticeable distortions. The method is
called Seam Carving. It is implemented in Photoshop as a feature called “content-aware
scaling.” First, read the paper “Seam Carving for Content-Aware Image Resizing” by S. Avidan
and A. Shamir, with emphasis on Section 3. Write a main.m script file that reads a given color
image file into MATLAB using imread, converts it to double so that pixels have values in the
range [0..1], calls functions to implement seam carving, and then creates an output RGB image
as a .jpg image file. Put all code, images, and answers to the questions given below in a
single zip file called <NetID username>-HW3.zip and submit this one file to Moodle. Your
code should implement the following steps:

1. Compute the energy function

Implement a function E = imenergy(I) (in a file called imenergy.m) that computes the
energy image E from an RGB image I as defined in Equation 1 in the paper. You can use
the MATLAB function Gmag = imgradient(J) to compute the gradient magnitude matrix
(of type double) of a grayscale image J. Because I is a color image, first convert I to
double using im2double, and then to grayscale using rgb2gray before computing the
gradient magnitude. E should be a double 2D array of the same size as I, with a floating-
point value at each pixel representing the gradient magnitude.

Your energy image should look like a gradient image. That is, the energy image should be
very bright where the original image goes from very bright to very dark (or very dark to very
bright) within a few pixels. And the energy image should be very dark where the original
image has a region of nearly constant intensity. For example, see
http://homepages.inf.ed.ac.uk/rbf/CVDICT/CVFIG3/img54.png (left is original image, right is
gradient image). The edges of the patches on the dog are very bright because that's where
the dog's fur goes from black to white or white to black. But within a white patch or within a
black patch of the original image, the gradient image is dark. See the Wikipedia page on
“seam carving” for another example.

2. Compute the optimal horizontal seam
Implement a function S = horizontal_seam(I) that takes an image and finds the (one)
optimal horizontal seam, returning a vector of length equal to the number of columns in I
such that each entry in vector S is an integer-valued row number indicating which pixel in
that column should be removed. For example, S(10)=37 means that in the 10th column the
pixel in row 37 is to be removed. The optimal seam can be found using dynamic
programming to compute, left to right, the cumulative minimum energy array, M, as
described in the paper. Starting from the minimum value in the rightmost column of M, S is
computed during the backward pass from the rightmost column to the leftmost column of M.
Adjacent entries in S must be at most one row apart so that the seam found is a path of 8-
adjacent pixel coordinates. (Note: you can plot the points in S on top of image I using
imshow, hold on, and plot. Plotting on top of the image will be used in creating the
image lastname.3.jpg described below in the Experiments section.) See the Wikipedia

http://pages.cs.wisc.edu/%7Edyer/cs534/papers/AvidanShamir2007-SeamCarving.pdf
http://homepages.inf.ed.ac.uk/rbf/CVDICT/CVFIG3/img54.png
http://en.wikipedia.org/wiki/Seam_carving

CS 534 Computational Photography Fall 2016

2

page on “seam carving” to see how dynamic programming works here (though the example
shown is for a vertical seam). NOTE: It is hard to vectorize the dynamic programming
algorithm in MATLAB so you are free to use loops.

To find the optimum seam, you need to keep track of two pieces of information at each pixel
location <r, c>: 1) the cumulative energy of the best seam "so far" that includes the location
<r, c>, and 2) a pointer to the location prior to <r, c>. Call the first piece of information
cumenergies and the second one pointers. To store this information, you have several data
structures to choose from:

1. An M x N cell array, with a 1 x 2 matrix in each cell. The two elements in each 1 x
2 matrix are cumenergy and pointer. A cell array has a grid representation like
regular MATLAB matrices, except that each cell can store an arbitrary data structure.
This is unlike regular MATLAB matrices where if one element is, say, uint8, all
other elements in the matrix also have to be uint8. Because of MATLAB's
somewhat clunky syntax rules, I wouldn't recommend this approach.

2. An M x N x 2 matrix where the first channel stores cumenergies and the second
channel stores pointers. This choice is pretty natural except that you have to
remember which channel stores what information, and that makes the code a little
less readable.

3. An M x N matrix for cumenergies and an M x N matrix for pointers. This is
probably the most readable option. I'd recommend this, but decide for yourself.

Note that to compute the optimal seam you need to know the coordinates of the min value
rather than the min value itself. See Matlab documentation for the min function to help you
decide how to implement this.

Another implementation detail is how to compute the min when you're at the top row or
bottom row. For example, consider the following 3 x 4 image:

 x a d x
 x b e x
 x c f x

Say we're filling the grid from right to left. b depends on all three neighboring pixels, d, e and
f, but at the top and bottom rows, you only have two neighboring pixels, e.g., a only
depends on d and e, while c only depends on e and f. How do you code this? You have
several options. Here's two:

1. If-else statements. This is probably the most obvious choice. Basically "if I'm at the
top row, ignore the (non-existent) row above me; if I'm at the bottom row, ignore the
(non-existent) row below me." It's a reasonable choice, but not super elegant.

2. Pad cumenergies with infinities. Before filling cumenergies, you add two rows of
pixels all with value infinity (Inf), one above the top row and one below the bottom
row, literally by just typing Inf in MATLAB, as shown below. That way you can
always take the min of all three neighboring pixels without worrying about boundary
cases (and since all pixels beside the Inf you've added are less than Inf, the min
will never be Inf). But you need to remember that row #1 in the original image is
now row #2 in cumenergies, etc.

 Inf Inf Inf Inf
 x a d x
 x b e x
 x c f x
 Inf Inf Inf Inf

http://en.wikipedia.org/wiki/Seam_carving
http://www.mathworks.com/help/matlab/cell-arrays.html
https://www.mathworks.com/help/matlab/ref/min.html

CS 534 Computational Photography Fall 2016

3

3. Remove 1 horizontal seam

Implement a function J = remove_horizontal_seam(I, S) that removes one
horizontal seam from image I (of size m x n) to produce new image J that has size (m-1) x n.

4. Resize

Implement a function J = shrnk(I, num_rows_removed, num_cols_removed) that
takes an input color image I and computes an output color image J that has
num_rows_removed fewer rows than I, and num_cols_removed fewer columns than I.
This should find one seam, remove it, find the next seam, remove it, etc. Implement this
function using only the horizontal seam detector and remover by (a) removing all horizontal
seams, (b) rotating the image 90° using J = permute(I, [2 1 3]) (do not use
transpose), (c) removing all vertical seams, and (d) un-rotating the image (using J =
permute(I, [2 1 3])). Hence you do not need to implement a separate vertical seam
removal function. Note: While your code’s runtime will not affect your grade, the runtime for
computing shrnk can be long; use built-in Matlab functions and the : operator instead of
loops whenever possible to speed up your code.

Experiments

1. Using the test image union-terrace.jpg , run your shrnk function with the following values

and create three (3) images called lastname.1a.jpg , lastname.1b.jpg and
lastname.1c.jpg showing the results for:

a. num_rows_removed = 0, num_cols_removed = 100
b. num_rows_removed = 100, num_cols_removed = 0
c. num_rows_removed = 100, num_cols_removed = 100

2. Create an image of the energy function output called lastname.2a.jpg and an image

called lastname.2b.jpg of the cumulative minimum energy array M created before
removing the first horizontal seam (your cumulative minimum energy array should be
computed left to right across the image, with each pixel containing the cost of the optimal
path from that pixel back to some pixel in the first column). That is, create the array M as
described in the lecture notes, based on the Energy image you created from the input
image. Be sure that M is the cumulative minimum energy computed from left to right,
starting from the first column and ending at the last column before removing the first
horizontal seam. So, the array M will be a 2D array the same size as the input image, with
values at every pixel; values will increase from left to right across the image, so viewing the
image you create should be darkest on the left and get lighter as you move right across the
image. And don’t put M on top of the original image; the image should just show the values
in the cumulative minimum energy array. Use imagesc and saveas to create these
images. Explain why these images look as they do. Put your comments in a file called
README.txt

3. Create an image called lastname.3.jpg showing the original image together with the first
selected horizontal seam and the first selected vertical seam overlaid. Explain why these
are reasonable optimal seams. Put your explanation into the same README.txt file.

4. Find on the web or take a photo to use as an input image (that is not too big) and name it

lastname.4a.jpg where this image shows an interesting successful result of shrinking
(either horizontally, vertically, or both) an image by some non-trivial amount. Save your

file://afs/cs.wisc.edu/p/course/cs534-dyer/public/html/fall16/hw/hw3/union-terrace.jpg

CS 534 Computational Photography Fall 2016

4

result image as lastname.4b.jpg Hand in both images and describe why it seems to
work well. Put your description in the same README.txt file as above.

5. Find on the web or take a photo to use as an input image (that is not too big) and name it

lastname.5a.jpg where this image shows an interesting poor result of shrinking a
different image (either horizontally, vertically, or both) by some non-trivial amount. Save
your result image with the name lastname.5b.jpg Hand in both images and describe
why it seems to work poorly. Put your description in the same README.txt file.

Extra Credit (up to 10%)

Implement one or more of the following or your own extension of any kind. Show and describe
results. Hand in a separate ExtraCredit folder containing your code and images.

1. Write a function J = expnd(I, num_rows_expanded, num_cols_expanded) that
expands the image by adding horizontal and vertical seams to create an output image
that has num_rows_expanded more rows and num_cols_expanded more columns.

2. Implement one or more alternate energy functions and compare them experimentally.

