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Homework #4:  Making Panoramas 

 
Assigned:  Thursday, October 13 

Due:  Thursday, October 27 
 

Introduction 
The goal of this assignment is to write a simple photo panorama stitcher.  You will take four or 
more photographs and create a panoramic image by computing homographies, warping, 
resampling, and blending the photos into a seamless output image.  See the lecture slides for 
more description of these steps.  A simple panorama stitcher typically consists of the following 
steps, some of which have been implemented for you.  Instructions that make your life easier 
are indicated in bold green.  Instructions about code that you have to implement are indicated 
in bold red.   

Prerequisite:  Install VLFeat 
In this assignment, we use the VLFeat open source library to detect feature points and find their 
correspondences in overlapping pairs of images. 

i. Download the source code from the VLFeat homepage1. 
ii. Unzip the file to a local folder. 
iii. Open the README.md file within the folder and follow the instructions to install VLFeat in 

your local machine. 
 

1.  Capture Images 
You are to create two panorama images, one using a set of four provided images in test.zip  
For the second panorama use your own set of at least four images.  You can assume the input  
images are all in a single folder and are named 1.jpg,  2.jpg  etc. where the images are 
taken from left to right in increasing order (i.e., 1.jpg overlaps with 2.jpg and that 1.jpg is to 
the left of 2.jpg in the original scene).  Be sure that consecutive images that you use for the 
second panorama overlap at least 30%.   
 
Place four or more of your own images in the input_images folder provided. 
 
Implementation tip: Test your work for correctness on a set of low resolution images before 
moving on to full resolution images.  Images can be downsized in MATLAB with the imresize 
function and saved with imwrite.   

2.  Compute Feature Points 
In this step you will detect feature points in each image. The output of this step is cell arrays 
keypoints and descriptors, such that keypoints{i} is a matrix of keypoints in image i, 
and descriptors{i} is a matrix of SIFT descriptors that describe the keypoints in image i. 
Information on the SIFT detector and descriptor is given in the Szeliski book in Sections 4.1.1 
and 4.1.2.  This step has been implemented for you.   
 

                                                
1 http://www.vlfeat.org/ 

http://www.vlfeat.org/
http://szeliski.org/Book/
http://www.vlfeat.org/
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3. Match Feature Points and Compute Homographies 
In this step, you will find the spatial relationship between each pair of overlapping images. This 
spatial relationship is represented by a transformation known as a homography, H, where H is a 
3 x 3 matrix. To apply homography H to a point p, simply compute p' = Hp, where p and p' are 
(3-dimensional) homogeneous coordinates. p' is then the transformed point. In this step 
however, we want to compute the homography given a set of (p′, p) pairs of corresponding 
feature points.   
 
In the previous step, we computed a descriptor for every keypoint in every image. Each SIFT 
descriptor is a 128-dimesional vector, while each SIFT keypoint is an x-y-orientation-scale 4-
tuple. Computing the homography between an image i and an image i+1 can then be done in 
the following steps:   

i. Find the correspondences between keypoints, using only descriptor information. 
ii. Remove the correspondence outliers found in the previous step, using RANSAC and x-y 

positional information only. 
iii. Calculate the homography, using the inliers found in the previous step.   

 
Part (i) has been implemented for you.  You must implement parts (ii) and (iii) by 
completing the calcHWithRANSAC function.  The main script will call this function to define a 
cell array H_list. 𝐻𝐻𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = {𝐻𝐻21,𝐻𝐻32,𝐻𝐻43, . . . ,𝐻𝐻(𝑚𝑚)(𝑚𝑚−1)}  where 𝐻𝐻𝑖𝑖𝑖𝑖 is the homography that maps 
points in image i into points in image j. 
 
Compute Homographies without RANSAC 
Given point-to-point correspondences, the following function called calcH should compute H:   

H = calcH(im1_ftr_pts, im2_ftr_pts) 
where im1_ftr_pts and im2_ftr_pts are n x 2 matrices storing the (x, y) locations of n 
feature point correspondences between the two images. Implicitly, im1_ftr_pts(i, :) 
should correspond to im2_ftr_pts(i, :) for all 𝑖𝑖 = 1, 2, . . . ,𝑛𝑛.  calcH returns H, the 
recovered 3 x 3 homography matrix.   
 
Once H is computed, multiplying H times the homogeneous coordinates of a point in image 2 
will return the homogeneous coordinates of that point projected into image 1.  In order to 
compute matrix H, you need to set up a linear system of n equations (i.e., a matrix equation of 
the form Ah = b where h is a column vector holding the unknown values of H).  If n = 4, the 
system can be solved using a standard technique.  However, with only four points, homography 
recovery is very unstable and prone to noise.  Therefore more than 4 correspondences should 
be used to produce an overdetermined system, which can be solved using least-squares.  In 
MATLAB, this can be performed using the MATLAB “\” operator (see mldivide for details).   
 
Compute Homographies with RANSAC 
Unfortunately, not all the corresponding points found by SIFT will be correct matches.  To 
eliminate “outliers,” i.e., incorrect matches, you need to modify calcHWithRANSAC so that it 
includes the RANSAC algorithm as part of the procedure for computing the best 
homography.  To do this, add a loop that runs numIter times, computing a homography at 
each iteration, and keeping the best homography found.  In each iteration, select four pairs of 
points randomly from those computed by SIFT, compute H from these four pairs of points, and 
then count how many of the other pairs of points agree, i.e., a point projects very near its 
corresponding point in the pair. Use a constant threshold value of maxDist pixels to decide 
whether two points are close enough to be considered “inliers.”  For example, if pi′ = (xi′, yi′) is a 
point in image 1 corresponding to point pi = (xi, yi) in image 2, first convert pi to homogeneous 
coordinates, say (xi, yi, 1); then multiply H by the 3 x 1 vector corresponding to the 
homogeneous coordinates of pi to obtain qi = Hpi ; then compute the Euclidean distance 
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between point pi′ and qi after first converting qi to its real-valued Cartesian coordinates; finally, 
check if the distance is less than maxDist, and, if it is, increment the count of the number of 
other pairs of points that agree with this H.   
 
Repeat the above process of randomly selecting four pairs of points numIter times, computing 
their associated H, and counting the number of inliers for each.  Keep the homography H* with 
the most agreement, i.e., greatest number of inliers.  Finally, compute the final homography 
using all the points that agree with H*.   
 
Use numIter = 100 and maxDist = 3 in your implementation of calcHWithRANSAC. 
 
Recommendation:  Implement RANSAC only after you have a working version of your code that 
does not use RANSAC.   
Implementation tip: The RANSAC loop can be implemented in nine lines of MATLAB, including 
the 'for' and 'end' lines. You may find the following snippets helpful, though it's not necessary to 
use them to receive full credit for this homework. 

● A = H * B;  % A and B are 3 x n matrices and H is a 3 x 3 matrix 
● dist = sqrt(sum((A - B).^2));  % A and B are n x 3 matrices and dist is a 1 x n matrix 
● inds = randperm(n, 4);  % inds is a vector of 4 random unique integers in [1, n] 

4.  Warp Images 
The next step is to warp all the input images into the output panorama image.  For large field of 
view panoramas, it is common to use a cylindrical surface for this purpose.  When only a few 
images are used covering a relatively small field of view, however, we can more simply warp all 
the images onto a plane defined by one of the input images, which we’ll call the reference 
image.  For simplicity, use image 1 as your reference image.    
 
This step can be broken down into the following parts: 

i. Compute the homography of every image with respect to the reference image. 
ii. Compute the size of the output panorama image, using forward warping. 
iii. Warp every input image on to the panorama, using inverse warping. 

 
You will implement part (i). That is, modify the main script to compute the cell array H_map of 
length m, such that 𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚 = {𝐻𝐻11,𝐻𝐻21,𝐻𝐻31, . . . ,𝐻𝐻𝑚𝑚1} for m input images.𝐻𝐻11 is the identity matrix.   
Parts (ii) and (iii) have been implemented for you.   
 
We describe each of these parts in detail below. 
 
You must first compute a new set of homography matrices so as to warp each image directly to 
the reference image, image 1. As stated above, the homography 𝐻𝐻𝑖𝑖𝑖𝑖 is such that 𝑝𝑝𝑗𝑗 = 𝐻𝐻𝑖𝑖𝑖𝑖𝑝𝑝𝑖𝑖 
where pi and pj  are points in images i and j respectively. Now we want to find Hi1 for all images 
i, expressed in terms of the homographies that we computed in the previous step. Then we 
have: 
 

𝐻𝐻𝑖𝑖1𝑝𝑝𝑖𝑖 = 𝑝𝑝1 = 𝐻𝐻21𝑝𝑝2 = 𝐻𝐻21(𝐻𝐻32𝑝𝑝3) = 𝐻𝐻21(𝐻𝐻32(𝐻𝐻43𝑝𝑝4)) = 𝐻𝐻21𝐻𝐻32. . .𝐻𝐻(𝑖𝑖)(𝑖𝑖−1)𝑝𝑝𝑖𝑖 
 
Therefore, the homography 𝐻𝐻𝑖𝑖1 that warps points in image i into points in image 1 is given by 
𝐻𝐻𝑖𝑖1 = 𝐻𝐻21𝐻𝐻32. . .𝐻𝐻(𝑖𝑖)(𝑖𝑖−1).  For example, 𝐻𝐻31 = 𝐻𝐻21𝐻𝐻32 and 𝐻𝐻41 = 𝐻𝐻21𝐻𝐻32𝐻𝐻43.   
 
Next, before warping each of the images, the size of the output panorama image must be 
computed and initialized from the range of warped image coordinates for each input image.  
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This is done for you in the provided code by mapping the coordinates of the four corners 
(i.e., top-left, top-right, etc.) from each source image using forward warping to determine 
its coordinates in the output image.  It computes the min_row, min_col, max_row, and 
max_col  coordinates to determine the size of the output image, defined by 
panorama_height and panorama_width.  Finally, row_offset and col_offset values 
are computed that specify the offset of the origin of the reference image relative to the upper-left 
corner coordinates of the output panorama image.  The output image array, called 
panorama_image, is created and initialized to all black pixels (i.e., value 0).     
 
Determining the size of the panorama used forward warping. However, if you use forward 
warping to map every pixel from each source image, there will be holes (i.e., some pixels in the 
output image will not be assigned an RGB value from any source image, and remain black) in 
the final output image. Therefore, we need to use inverse warping to map each pixel in the 
output image into the planes defined by the source images.  The provided code uses bilinear 
interpolation to compute the color values in the warped image by calling the MATLAB 
function interp2 (with argument ‘linear’ to do bilinear interpolation).  The provided code 
uses the MATLAB meshgrid function to do this efficiently.  Type ‘help interp2’ and ‘help 
meshgrid’ to view the help documents for more details on these two functions.   
 
Two issues must be dealt with when performing inverse warping:  First, some pixels in the 
output image will not map to a pixel in a given source image because the output pixel’s 
coordinates map outside the domain of the source image.  In this case a value of zero will be 
returned for the given output image pixel by setting an extrapolation value of zero in the call to 
interp2.  Second, some pixels in the output image will have more than one input image 
overlapping it; in this case, the provided code simply takes the sum of these source image’s 
pixel values to the output image.  While this will produce an output image for initial debugging, 
you must replace this with a better method of blending, as described in the next step below.   

5.  Blend Images 
Now that the images are transformed to the same coordinate frame, the final step is to blend 
overlapping pixel color values in such a way as to hide seams.  One simple way to do this, 
called feathering, is to use weighted averaging of the color values to blend overlapping pixels 
(see Section 9.3.2 in the Szeliski book).  To do this, use an `alpha channel’ where the value of 
alpha for each input image is 1 at its center pixel and decreases linearly to 0 or a very small 
positive value at all the border pixels.  You can use the MATLAB function bwdist with 
argument ‘euclidean’  and applied to a binary image that has 1s beyond the edges of the 
warped image and 0s within the warped image, then normalize the distances to be in the 
interval (0, 1].  Compute an alpha channel for each input image. See below for an illustration of 
the above steps. 
 
 
 
 
 
 
 
 
 
 

http://szeliski.org/Book/
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Illustration of computing the alpha channel of an input image.  (a) Input image before warping.  
(b) Input image after warping.  (c) Binarization of input - 1s outside the boundary of the warped 
image and 0s inside.  (d) Distance transform of (c). The alpha channel should be the distance 
transform normalized to the interval (0, 1].   
 
 
Use these alpha values as follows to compute the color at a pixel where at least two images 
overlap in the output image.  For example, suppose there are two warped images I1 and I2 that 
overlap in the output image. Let their red channels be IR1 and IR2 and their alpha channels α1 
and α2 respectively. Then the output red channel IRout is given by: 
 

𝐼𝐼𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
𝛼𝛼1𝐼𝐼𝑅𝑅1 + 𝛼𝛼2𝐼𝐼𝑅𝑅2

𝛼𝛼1 + 𝛼𝛼2
 

 
Do the same for the output blue and green channels, IBout and IGout.  Note that both alpha 
channels have to have non-zero values, otherwise you'll encounter a division-by-zero error in 
the above equation. The final panorama image is then simply all your warped images blended 
together sequentially.  You will implement blending by completing the blend function. 
You will blend the warped images into a panorama by calling blend in the main script.   
 

 

Program Instructions 
In addition to code provided for computing and matching feature points using the SIFT 
algorithm, skeleton code is also provided in three files:  main.m  which is a script file that 
contains the basic parts for creating your panorama, calcHWithRANSAC.m which is a function 
that calculates a homography matrix from a given pair of images’ feature points, and blend.m 
which is a function that blends two color images.  Read the comments at the top of these files to 
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learn more about what they do.  Both files have sections marked “YOUR CODE STARTS 
HERE” indicating places where code needs to be added.  Be sure to save your output 
panorama as a .jpg image file (see below for naming information).  You can also write any 
other supporting functions and scripts as needed.   
 
Impementation tip: The main script is divided into several code sections delimited by the double 
percentage sign '%%'. Click 'Editor > Run Section' in MATLAB to run your current code section. 
This saves you from running the entire script when you only made changes to a single code 
section. 

Hand-In Instructions 
Hand in the following files and folders:   

● main.m   – the script file that computes the panorama  
● calcHWithRANSAC.m   – the function that computes the projective transformation 

between two sets of points and includes the RANSAC algorithm 
● blend.m   – the function file that blends two RGB images. 
● input_images  – a folder containing your own input images used to create your 

second panorama.  There must be at least four images, named 1.jpg, 2.jpg, 3.jpg, 
etc. 

● output_images   – a folder containing the two output panorama images, one named 
test.jpg  (created from the four given test images) and the second panorama named 
<NetID username>.jpg  (created from your own set of images) 

●  README.txt file that contains comments on any relevant implementation notes 
including parameter values used, and any extra work beyond the basic requirements, if 
you did any.   

● Any additional scripts or functions that you wrote.   

Zip all the above into a single zip file called <NetID username>-HW4.zip and submit this 
one file to Moodle.  

Extra Credit 
Instead of mapping the images onto a plane, map them onto a cylinder by using cylindrical 
projection as described in the lecture slides.  See Section 9.1.6 in the Szeliski book for more 
information.  To interactively view your resulting panorama you can use one of the existing 
viewers listed on the homework page.   

Further Reading 

● To understand how the VLFeat functions work, read the document on the VLFeat 
homepage, especially this SIFT tutorial2.  We use vl_sift and vl_ubcmatch in this 
assignment.   

● Information on homographies is given in the Szeliski book in Sections 2.1.2, 6.1.2, 6.1.3, 
and 9.1.1.   

● For more information on RANSAC, see Section 6.1.4 in the Szeliski book.   
● To see what a more full-fledge panorama stitcher looks like, look at the OpenCV 

documentation3.   

                                                
2 http://www.vlfeat.org/overview/sift.html 
3 http://docs.opencv.org/3.0-beta/modules/stitching/doc/introduction.html 

http://www.vlfeat.org/overview/sift.html
http://docs.opencv.org/3.0-beta/modules/stitching/doc/introduction.html
http://docs.opencv.org/3.0-beta/modules/stitching/doc/introduction.html
http://www.vlfeat.org/overview/sift.html
http://docs.opencv.org/3.0-beta/modules/stitching/doc/introduction.html
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