Video to Action Shot Sequence

By Aaron Knaack, Marissa Karp, and Elliot Shin

Website:_https://actionsequence.wordpress.com

https://actionsequence.wordpress.com/

Abstract

Video to Action Shot Sequence is an algorithm using tools from the Vision System
Toolbox provided by Matlab to develop an image from videos which represent an object’s
change over a period of time. The algorithm is designed to result in a composite image using
several instances of a video and “stitching” the moving foreground object into one final image.
Methods used to accomplish this can be summarized into a few categories: techniques such as
Object Tracking, Foreground Detection using Gaussian Mixture Models (GMM), morphology
operations provided by Matlab to clean masks, and processing the masks. The algorithm
described in this paper has limitations for it’s use such as the number of moving objects, the
velocity of the object, and the morphology being used which depends on the overall quality and
video attributes. Overall, the output from using the algorithm provides concrete results when the
limitations are considered, and correct morphology operations are used.

Inspiration

Often times, photographers, ranging from novice to professional, put together action
sequence of an object to demonstrate the movement in short time period and give dynamic effect
to the photograph. This action sequence photograph is traditionally produced by manually
editing multiple images using programs such as Photoshop. As much as the action sequence
images look astonishing, they require a lot of effort and time. The goal of this project was to
develop an algorithm to convert a video of an object in action into a single image that
demonstrates the full action. This would mainly require three steps: align background while
ignoring the moving object (foreground), detect the segment on the moving object, and cleanly
put together all sequence images of an object into one background image.

The original goal for this project was to convert a dynamic video, with moving
background, into action sequence image in MATLAB. This required particularly detailed
background alignment due to movement of camera not allowing the sequence of images to share
enough area to create clean background. One solution for this problem was to increase the
amount of images used for creating the background. However, this was not the only issue for
dynamic video conversion. When the input video is shaky or has rotation that creates low
resolution frame, SIFT detection was not very reliable. Output image contained blurry and
distorted image as a result. Thus, the project took a turn and the input video was limited to stable
videos.

Method

I. Set Up Video
First, the desired video is retrieved and broken up into separate images, frame by frame.
Each of these frames is then stored in an array. In this step, we also found information about the
width and height of the frames as well as described a training variable used as a parameter for the
Foreground Detector objects. It is important to note that adjusting this variable can influence the
results significantly. Setting the variables early is good for consistency because they will be used
several times in four separate Foreground Detector objects.

II. Get the Background
The next step is to find the composite background, filling all holes covered from the
moving object. Stepping through the video, we stored the first frame (Figure 1) and last frame
(Figure 2).

Pk 3:

) T

Figure 1 Figure 2

In combination with a method of background subtraction described by Chen, Stabler, and Stanley in
their paper, “Automatic Generation of Action Sequence from Burst Shots” we used Foreground
Detector which generated a mask of the last frame, and applied the difference of these two images
in order to remove all foreground from the image (Figure 3 - 4). This created a final image with just
the background of the video shown in Figure 5.

E

Figure 3 Figure 4 Figure 5

III. Determine bounds of moving object

Now that we found the background image, we needed to find the location of the moving
object. Using background subtraction algorithm based on the Gaussian mixture models provided
by the Foreground Detector tool in Matlab, detecting the moving object was made easy in
concert with blob analysis, which detects groups of connected pixels. As seen in Figure 6 below,
a bounding box is placed around the moving object. Due to the fact that blob analysis can detect
several areas of one entire object, we made the assumption that the largest box bound in each
frame was the moving object that we wanted to extract in it’s entirety. Because of this, we stored
the information for the largest bounding box of each frame. By using the centroids of the boxes
we determined the object’s direction using the average coordinate along the x-axis of the first 8
frames, and the last 8 frames. Currently, the program is restricted to left and right movement.
Moving forward, we would strive to implement up, down, and diagonal movement capabilities.

Figure 6

IV. Retrieve the frames where foreground doesn’t overlap

An issue that we ran into during the trial process was that overlapping foreground objects
from one frame to the next caused artifacts and failures with the output images due to rigid or
incomplete masks, or oversaturated thresholds. Figure 7 and Figure 8 are both examples of failed
output image due to overlap.

Figure 8

In order to avoid these issues, we implemented this step to determine which frames to
include in the final output image based on where there was minimal to no overlap. A buffer was
created that is dependent on the number of frames, the average bounding box area, and the video
width. We then used that buffer along with each individual bounding box’s width and x and y
coordinates to determine whether or not those boxes are overlapping. If the separate foregrounds
are not overlapping, the frame is considered a “non-overlapping frame” and used as a reference
for the next iteration. These images are put into an array of “non-overlapping images.” This
array will be used as a list of which frames to stitch together in the final output image so that
there is little to no overlap. The improvement from this buffer can be seen by comparing Figure
8 above with the new output in Figure 9 below.

Figure 9

V. Create masks
Next, we need to extract the moving object from the chosen parts of the video. To do
this, we needed to create a mask for each frame in the “non-overlapping image” array that was
just created. These masks will block out any background pixels, erasing them in a sense.
Reading through the video again and using the Foreground Detector, the foregrounds were then

stored in a foreground masks array, but only taken from the second half of the video. This is
because Foreground Detector used object tracking and predicts the path of the foreground object,
and it’s the prediction of this path which improves as the video proceeds. Only concerned with
the better half, we needed to find a way to improve the masks from the first half. To accomplish
this we reversed the array of frames stored at the beginning and created a new video which plays
backwards. Repeating the last step we ran through that video again concerned again with only
the last half of the video (ultimately the first half of the original video). Reversing the video and
using the Foreground Detector once more allowed more accurate results for both halves of the
video.

Figure 10 Figure 11 Figure 12

VI. Clean the masks

In order to get a more precise mask for each frame, we used morphology to clean up the
masks. Combining the imopen, imclose, imdilate, and imerode functions with strel to clean the
foreground object’s mask, we can adjust for poor masks generated in the previous stage (Figure
10 - 12). Right now, the code used is dependent on the video, with different videos using
different thresholds to create the best outcome. In the future, we would look into having user
interaction with GUIs such as Shoelson’s Image Morphology app that you can download through
Matlab in order to determine the best threshold that should be used to create a mask appropriate
for the video.

Figure 13 Figure 14 Figure 15

VII. Apply the Masks

The final task is to apply the masks to the background image to create the final product.
We multiplied each foreground mask (Figure 13 - 15) and each corresponding foreground object
image to create a cut out of the foreground object (Figure 17,20,23). Then, we applied the
inverse of the foreground mask to the background (Figure 16,19,22). This creates a hole in the
background images where the foreground object will be placed. Stitching together the
foreground cutout to the background, pixel wise addition was done (Figure 18,21,24). This gives
the final result image, which can be seen below, with each foreground object from the chosen
images stitched onto the background image (Figure 24).

Figure 17

Figure 22 Figure 23 Figure 24

Limitations

There are a few very important variables to consider when using the algorithm. This is
mostly stemmed from the type of video being used, and it’s content. For example, because of the
use of the Foreground Detector from Matlab’s Vision Toolbox it is necessary that the video
comes from a still camera. If the camera movement is dynamic along with the object of interest,
the Foreground Detector cannot properly detect the foreground, and background subtraction
cannot occur. However, small camera shifting during recording of the footage can still produce a
fairly decent result, but the cost is a poorer quality output image with likely slight artifacts. This
is mostly because small shifts create a mask that is slightly shifted from an adjacent frame, and
produces a blurring or what I’ll call “object extending” due to different pixels representing the
same area be placed next to one another.

bgCutOut

fgCutOut

Figure 25 Figure 26
Notice in Figure 25 (the “fgCutOut”) that much of the foreground detected was in actually the
background caused by shifts in the background, and exactly the inverse cutout occurs in (the
“bgCutOut”) Figure 26.

Also, the algorithm has been written with some assumptions. That is: one foreground
object is of interest, and another is that the object is moving either left or right. It should be noted
that later implementations can improve the direction restriction. Ultimately, these limitations are
a result of caution made to prevent overlapping foreground objects. We avoid using overlapping
foreground objects because the masks can have impurities and imperfect edges, and this is a
result of which Morphology Operations are used.

Figure 27 Figure 28

Figure 27 is before the morphology operations are applied, and Figure 28 is the resulting mask.

To ensure that the foreground objects do not overlap our algorithm uses object tracking
and encloses the object with several bounding boxes. Once the objects are defined in each frame,
it is assumed that the largest box is the most important and encloses most of the object of
interest. The top left x,y-coordinates of the bounding box, including centroid, and width is used
to compare adjacent frames and determine whether there is overlap of foreground objects. If
there is no overlap of bounding boxes that frame is used next as a reference to be compared to in
the following frames, and is stored as a non-overlapping frame to be used later. This is why
determining whether the object is moving left or right is necessary - to compare correct
coordinates of the adjacent frame’s bounding boxes.

Another tool used to help ensure there is no overlap of objects is an arbitrary variable
called the “buffer”. The buffer adds a little additional spacing between foreground objects from
the different frames. The buffer is used because much of the time the bounding boxes may not
always provide accurate enclosures of the foreground object, especially at the beginning of the
video. In Figure 29, the boxes are of the object, but there are many enclosures, where later in
Figure 30 the enclosure is improved. Another example would be part of the tree being enclosed
and not the foreground object at all.

e

S TN

Figure 29 Figure 30

The buffer is calculated using the number of frames, and the width of the video.
Adjusting the buffer manually can result in better output results, and finding a better buffer
algorithm is one area that can most definitely be improved in. But, for now the buffer is
calculated under the assumption that the foreground object is roughly the same height of the
video and begins exactly on one side of the video and reaches the other side by the end of the
clip.

Our algorithm is at it’s best trying to accommodate for all several different types of video
with these restrictions in mind. When each variable is considered and proper morphology can be
used, the need to account for overlapping is not necessary. Understanding the algorithm in its
completeness and understanding the variables aforementioned then the code may be edited to a
specific input video and the results can be impressive. Here is a final example where more
precise morphology was used specific to this video, and the overlapping restriction was emitted.
Figure 31 is allowing overlap, but not using perfect morphology operations, whereas Figure 32 is
allowing overlap and morphology has been improved to this specific video.

Figure 31

Job Partition & Useful Resources

Elliot Shin : Code: Importing Video, Organizing Video Frames, Image Masking, Paper:
“Inspiration”

Marissa Karp : Code: Image Masking, and Stitching Images, Paper : “Method”, Website
Aaron Knaack : Code: Blob Analysis and Foreground Detection, Stitching Images, Paper:
“Abstract” & “Limitations”

Chen, S., Stabler, B., & Stanley, A. (2013, June 5). Automatic Generation of Action Sequence
Images from Burst Shots. Retrieved December 21, 2015, from
https://stacks.stanford.edu/file/druid:yt916dh6570/Chen_Stabler Stanley Action Sequence Gen
eration.pdf

Much of the example code found here was referred to while writing the code for our project:

http://www.mathworks.com/help/vision/examples/detecting-cars-using-gaussian-mixture-models
html - more specifically in lines 110 - 143 of our code

Final Results

http://www.mathworks.com/help/vision/examples/detecting-cars-using-gaussian-mixture-models.html
http://www.mathworks.com/help/vision/examples/detecting-cars-using-gaussian-mixture-models.html

More Final Results

