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practical systems.1 Besides applications related to iden-
tification and verification—such as access control, law 
enforcement, ID and licensing, and surveillance—face 
recognition has also proven useful in applications such 
as human-computer interaction, virtual reality, database 
retrieval, multimedia, and computer entertainment.2-4 

Figure 1 shows a schematic of a general face-recognition 
system, which consists of three major modules: face detec-
tion, feature extraction, and face recognition. As in any 
pattern recognition problem, variations in patterns from 
illumination, pose, expressions, and so on are handled 
either by making the features invariant or robust to these 
transformations in the feature extraction stage, or by des-
ignating rules that account for these transformations in 
the recognition stage.

In the design of face-recognition systems, at least three 
tasks must be kept in mind: 

•	 Verification. A recognition system determines if the 
person pictured in a face image matches a claimed 
identity.

•	 Identification. A recognition system determines a per-
son’s identity in a face image.

•	 Watch list. A recognition system determines if the 
person in a face image appears on a watch list and, if 
so, identifies that individual.

I
n most situations, face recognition is an effortless 
task for humans. But is this true for computers? 
That question defines the field of automatic face 
recognition, one of the most active research areas 
in computer vision, pattern recognition, and 

perception.
Over the past two decades, the problem of face recog-

nition has attracted substantial attention from various 
disciplines and has witnessed an impressive growth in 
basic and applied research, product development, and 
applications. Face-recognition systems have already been 
deployed at ports of entry at international airports in Aus-
tralia and Portugal.

Studies of how humans perceive faces have generated 
many interesting findings that can be used to help design 

Research into face recognition offers re-
search opportunities that will challenge 
scientists and engineers for years to come. 
Robust face-recognition systems, for ex-
ample, can be used in projects related to 
homeland security, human-computer inter-
action, and many consumer applications.
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Figure 2 shows these three tasks. The difficulty of the 
identification and watch list scenarios depends on the size 
of the database or watch list.

WHY FACE RECOGNITION IS HARD 
Acquisition conditions—the face’s pose with respect to 

the camera, illumination, facial expressions, and number 
of pixels in the face region—and natural aging cause 
human face images to undergo many changes. Additional 
variations can be caused by disguises, occlusions from 
items such as sunglasses or a hat, and facial hair. Aging 
also causes some people to experience weight gain or loss, 
thus adding another dimension to human face variations. 
Even when focusing on a single subject, the range of face 
images can be extensive, as Figure 3 shows. The challenge 
of face recognition is to identify a person in the presence 
of all these variations.

PERCEIVING FACES 
Since humans possess impressive skills for recognizing 

faces, face-recognition system designers should be aware 
of the factors affecting human-face perception. This area, 
widely studied for at least three decades,1 has provided key 
findings and can be organized into five categories.

Recognition
Humans can recognize fa-

miliar faces as a function of 
available spatial resolution, 
even in very-low-resolution 
images. The ability to tolerate 
degradations increases with 
familiarity, but high-frequency 
information by itself is insuffi-
cient for good face-recognition 
performance. 

Piecemeal versus holistic
While the nature of face-rec-

ognition processing is piecemeal 
rather than holistic, facial fea-
tures are processed holistically. 
Of the different facial features, 
eyebrows are among the most 
important for recognition. The 
configural relationships appear 
to be independent across the 
width and height dimensions.

Look at those eyebrows 
Among the different facial fea-

tures, eyebrows are comparable 
to eyes in their importance for 
recognition.1 Several possibilities 

Approaches
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Figure 1. Schematic of a generic face-recognition system, 
which consists of three major modules: face detection, 
feature extraction, and face recognition.
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Figure 2. This diagram shows the structure of three face-recognition tasks. These tasks 
are verification, watch list, and identification.
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face, they may be less susceptible to shadow and 
illumination changes.

The nature of cues
Face shape appears to be encoded in a carica-

tured way that focuses on pigmentation, shape, 
and motion. Prolonged face viewing can lead to 
high-level aftereffects that can be as straightfor-
ward as a face distorted in the opposite manner 
as the adapting face, or as complex as an anti-
face with a specific identity and no discernible 
distortions, suggesting the possibility of proto-
type-based encoding. Pigmentation cues are at 
least as important as shape cues.

Color cues play a significant role as well—espe-
cially when shape cues degrade—while contrast 
polarity inversion dramatically impairs recogni-
tion performance, possibly due to a compromised 
ability to use pigmentation cues. Illumination 
changes influence generalization, which ap-
pears to be mediated by temporal association. 
Face motion appears to facilitate subsequent 
recognition.

Developmental progression
The visual system starts with a rudimentary 

preference for face-like patterns. The system then 
progresses from a piecemeal to a holistic strategy 
over the first several years of life.

Neural underpinnings
The human visual system appears to devote 

specialized neural resources to face perception. 
The latency of responses to faces in the infero-
temporal cortex is about 120 ms, suggesting a 
largely feed-forward computation. Facial identity 
and expression might be processed by separate 
systems.

STATE-OF-THE-ART REVIEW
The first step in any automatic face-recogni-

tion system is face detection in images.

Face detection
Once a face has been detected, feature extraction ob-

tains information that can be fed into a face-classification 
system. Depending on a classification system’s type, fea-
tures can be local, such as texture or fiducial points, or 
facial components, such as eyes, nose, and mouth.5

Paul Viola and Michael Jones6 designed one of the most 
popular and robust face-detection algorithms. They intro-
duced a machine-learning approach for object detection by 
learning a strong classifier through a weighted combina-
tion of several weak learners. For a two-class problem with 

arise for explaining the perceptual significance of eye-
brows in face recognition.

First, eyebrows appear to be important for conveying 
emotions and other nonverbal signals. Since the visual 
system may already be biased to attend to the eyebrows 
for detecting and interpreting such signals, this bias might 
also extend to the task of facial identification.

Second, for several reasons, eyebrows can serve as a 
stable facial feature. Because they tend to be relatively 
high-contrast and large facial features, eyebrows can sur-
vive substantial image degradations. Since eyebrows sit 
atop a convexity (the brow ridge separating the forehead 
and orbit), when compared to some other parts of the 

Aging

Pose

Expression

Illumination and blur

Figure 3. Range of faces for the same individual due to variations in 
aging: first row, from youngest to oldest; second row, expression; third 
row, pose; bottom row, illumination and blur.

R ecent research shows that computers can outperform humans on 
frontal still-face images across changes in illumination.1 How general is 

this result? Humans excel at recognizing familiar faces, but we overestimate 
our skill at recognizing unfamiliar ones. Yet even when recognizing unfamiliar 
faces, humans have the most robust face-recognition systems available. They 
can adjust for combinations of changes in pose, illumination, blur, and resolu-
tion significantly better than computers can.

In low-resolution video, humans intrinsically integrate temporal and 
body features that leading-edge research is only now starting to address. 
Recent work has shown that fusing computers and humans can lead to 
near-perfect recognition (A.J. O’Toole et al., “Fusing Face-Verification Algo-
rithms and Humans,” IEEE Trans. Systems, Man, and Cybernetics, 2007, pp. 
1149-1155).

Reference
	 1.	 P.J. Phillips et al., “FRVT 2006 and ICE 2006 Large Scale Results,” IEEE 

Trans. Pattern Analysis and Machine Intelligence, forthcoming; DOI 
10.1109/TPAMI.2009.59.

ARE COMPUTERS BETTER THAN HUMANS?
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labeled training examples, a learning algorithm based on 
Adaboost selects a small number of critical visual features 
that provide the best classification accuracy.

Figure 4 shows an example of a typical face- and fea-
ture-detection algorithm.

The early years 
In the late 1980s and early 1990s the use of still-face-

recognition subspace methods such as principal component 
analysis (PCA), linear discriminant analysis (LDA), and a 
structural approach called elastic graph matching (EGM) 
energized face-recognition research. Since then, many 
researchers have extended these three algorithm types.

In the Face Recognition Technology (FERET) evaluation 
of face-recognition algorithms conducted in late 1996 and 
early 1997,7 the best performers were algorithms derived 
from a probabilistic subspace analysis, LDA, and EGM 
approaches. The most difficult FERET experiment was 

Figure 4. Example of face detection and facial feature 
extraction. (Image courtesy of Hankyu Moon and colleagues, 
IEEE Trans. Image Processing, Nov. 2002, pp. 1209-1227.)

Table 1. Summary of FRVT evaluations.

Test Description Conclusions

FRVT 2000 The Face Recognition Vendor Test 2000 technology 
evaluation used the Sep96 FERET evaluation proto-
col, but was significantly more demanding than the 
Sep96 FERET evaluation.
Participation in FRVT 2000 was restricted to COTS 
systems. A variety of imagery was used in FRVT 
2000, which reported results in eight general cate-
gories: compression, distance, expression, media, 
illumination, pose, resolution, and temporal. There 
were no common findings across all eight 
categories.

(a) Probe images compressed using JPEG up to 40:1 did not reduce  
recognition rates.
(b) The evaluation results showed that pose does not significantly affect 
performance up to ±25°, but that performance is significantly affected 
when the pose angle reaches ±40°.
(c) The indoor change of lighting did not significantly affect performance, 
but moving from indoor to outdoor lighting significantly affected 
performance.
(d) On the FERET experiment where face images of a person were taken at 
least 18 months apart, performance improved substantially.
(e) Recognition across changes in  pose and illumination continue to be 
future areas of interest; along with face images of a person taken at least a 
year apart. 
These conclusions were taken from www.frvt.org.

FRVT 2002 The primary objective was to provide performance 
measures for assessing the ability of automatic face- 
recognition systems to meet real-world 
requirements. Ten participants were evaluated. 
Real-world performance statistics for verification 
and identification were reported on a very large 
dataset of 121,589 face images of 37,437 people.

(a) Indoor performance had improved since FRVT 2000.
(b) Performance decreases approximately linearly with elapsed time.
(c) Better systems are not sensitive to indoor lighting.
(d) 3D morphable models improve performance.
(e) Males are easier to recognize than females.
(f) Older subjects are easier to recognize than younger subjects.
(g) Outdoor recognition performance needs improvement.  
These conclusions were taken from www.frvt.org.

FRVT 2006 The primary objective was to evaluate 3D and still- 
image-based face-recognition algorithms. The 
evaluations were organized along three experi-
ments. The first experiment compared two still 
images taken with studio lighting. The second 
matched 3D face data using shape and texture 
information. The third compared a still face image 
taken under studio lighting to still-face images 
taken in hallways and atriums.

(a) A two-orders-of-magnitude improvement in recognition performance 
has been obtained since 1993.
(b) The recognition improvement was one order since 2002.
(c) On comparably controlled acquisition conditions, the performance of 
single iris- and face-based recognition performance was comparable with 
the FRVT 2006 data.
(d) The performance of still-image-based and 3D face-based methods was 
comparable.
(e) Under some conditions, computers can recognize faces better than 
humans can.
(f) Illumination and resolution do matter in achieving high recognition rates. 
These conclusions were abstracted from Phillips et al., “FRVT 2006 and ICE 
2006 Large Scale Results,” to be published in IEEE Trans. Pattern Analysis and 
Machine Intelligence; DOI 10.1109/TPAMI.2009.59.
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Consistently, 3D morphable model-based ap-
proaches yielded high recognition rates when 
recognizing non-frontal faces. Many extensions 
of these approaches have met with different 
degrees of success. Most of the model-based ap-
proaches are computationally intensive and often 
require manually selecting a small number of 
features.

Parallel to the development of 3D morphable 
model-based methods, approaches to illumina-
tion normalization have engaged the attention of 
computer vision researchers. Earlier attempts at 
reducing illumination effects included dropping 
the first few eigenvalues of the principal compo-
nent expansion, using the gradient directions as 
features, or building a subspace representation 
known as the illumination cone to capture the 
images of a convex Lambertian object.

Low-dimensional spherical harmonics representations 
were also found effective for face recognition under light-
ing variations. Extensions to a 3D morphable model-based 
approach to derive lighting-invariant representations have 
also been proposed. Other efforts included computing 
a self-quotient image by dividing a face image with a 
smoothed version of the image, leading to insensitivity to 
lighting variation—a generalized photometric stereo algo-
rithm that allows for within-class shape variation.

More recently, researchers have developed a non-
stationary stochastic filtering algorithm for estimating 
illumination-insensitive face-recognition albedo maps. 
Figure 5 shows examples of estimating these maps and 
3D models from a single image. The general consensus 
is that while these methods have produced much better 
results than the traditional subspace methods for recog-
nizing faces with illumination variations, they have all 
been evaluated on controlled datasets such as the Yale 
B or PIE datasets collected at Carnegie Mellon Univer-
sity. Designing methods that are robust to illumination 

recognizing faces of a person from images taken at least 
18 months apart. Table 1 provides brief descriptions of the 
series of face-recognition vendor tests (FRVTs) conducted 
by the National Institute of Standards and Technology 
(NIST) starting in 2000.

Pose, illumination, and expression
Researchers have addressed face recognition across 

changes in pose, illumination, and expression (PIE). 
Earlier attempts included extending the eigenface ap-
proach by building separate eigenspaces that capture 
information from different viewing directions, com-
pensating for pose variation by building a 3D model, 
and generating 2D representations for multiple poses. 
To handle pose and illumination variations, developers 
proposed a 3D morphable face model8 in which a linear 
combination of a set of 3D face exemplars provides the 
parameters for the shape and texture, and the param-
eters are estimated by fitting a morphable model to the 
input image.

Figure 5. Examples of recovering illumination-free albedo maps and 3D models from images downloaded from the Internet. In 
each row, the leftmost image was downloaded from the Internet. The next two images are the reconstructed 3D models viewed 
from two angles. The final sets of images were generated by synthesizing new images from the 3D models that correspond to 
the different poses. (Image courtesy of Soma Biswas et al., IEEE Trans. Pattern Analysis and Machine Intelligence, May 2009, pp. 
884-899.)

A t a meeting held in 2002 to discuss the future challenges in face 
recognition, Prof. Takeo Kanade claimed that face alignment poses a 

critical issue that should not be ignored. He based this claim on experi-
ments done using the CMU PIE dataset (http://facealignment.ius.cs.cmu.
edu/alignment/webdemo.html).

Prof. Kanade’s claim has been validated and also has been noted by 
other researchers. If faces are not registered well, illumination-normaliza-
tion methods based on pixel descriptions such as generalized photometric 
stereo, self-quotient imaging, shape-from-shading, and 3D morphable 
models suffer. Registration of face alignment is critical for mitigating the 
effects of pose variations. Over the years, computer vision researchers have 
struggled with this problem and suggested many techniques for face align-
ment using feature graphs, 3D morphable models, and related techniques. 
Yet automatic registration of faces remains an open problem.

REGISTRATION, REGISTRATION,  
REGISTRATION
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Generalizing factors
The ability to generalize across pose, illumination, 

expression, and other factors depends on the chosen 
combination. VFR is particularly useful in surveillance sce-
narios, in which it might not be possible to capture a single 
good frame, which most still-image-based methods require.

A typical VFR system acquires video feeds from one 
or multiple cameras, tracks and segments faces from the 
input feeds, extracts representations to characterize the 
identity of the faces in the video, then compares them with 
the enrolled representations of subjects in the database. 
This constitutes the system’s test phase.

During the enrollment or training phase, a similar se-
quence of steps occurs, using one or multiple video feeds 
per identity. Researchers store the corresponding compos-
ite representations in the database. VFR approaches differ 
in the representation used to characterize the moving 
faces. An ideal VFR system performs these operations 
automatically, without human intervention.

Information fusion
One of the biggest challenges a VFR system faces 

requires effective utilization and fusion of the informa-
tion—both spatial and temporal—in a video to achieve 
better generalization for each subject, along with  
discriminability across different subjects for improved identi-

variations in uncontrolled situations remains an open 
problem. Facial-expression analysis and recognition 
have been studied extensively in the context of human-
computer interactions.9 Facial identity and expression 
might be processed by separate systems. Although many 
techniques for automatic recognition of expressions are 
available, they are most effective for macroexpressions 
such as joy, anger, surprise, or fear.3 Analysis and recogni-
tion of micro-expressions is an active research area that 
has penetrated the popular culture by way of the televi-
sion show Lie to Me!

Face recognition across aging 
One daunting aspect of face recognition—aging—is 

challenging because it must address all other variants as 
well. Pose, expression, and illumination changes can occur 
when two images of a person are taken years apart. The 
skin’s textural properties can also differ due to makeup, 
spectacles, weight loss or gain, hair loss, and so on.

The facial changes that occur due to aging are influ-
enced by several environmental factors, such as solar 
radiation, smoking, drug use, and stress level.10 Biological 
and environmental factors can either delay or expedite the 
aging process. Aging causes changes in both the hard and 
soft facial tissues. Loss of tissue elasticity, facial volume, 
and alteration in skin texture also occur with aging. Al-
though the manner of aging is highly unpredictable, a 
sequence of changes appears to adhere to a basic progres-
sive pattern across time.

Drifts in facial landmarks appear to reasonably charac-
terize the shape variations associated with aging, especially 
between ages 2 and 18. For older subjects, variations in 
facial texture appear to dominate variations in shape. Con-
tributions to face morphological studies have come from 
both psychophysics and computer-vision researchers.

Psychophysics methods include deriving cardioidal 
strain transformations and their extensions, variations in 
shape and degree of skin wrinkling, and exaggeration or a 
de-emphasis on facial creases. Computer-vision research-
ers have proposed subspace-based, model-based, and 
machine-learning approaches for face recognition across 
aging.11 Figure 6 illustrates some appearance-prediction 
results derived using a craniofacial growth model.

VIDEO-BASED FACE RECOGNITION
Video-based face recognition (VFR) can establish the 

identity of one or several persons present in a video based 
on facial characteristics. Given the input face video, a typi-
cal VFR approach combines the temporal characteristics 
of facial motion with appearance changes for recognition. 
This often involves temporal characterization of faces for 
recognition, building a 3D model or a super-resolution 
image of the face, or simply learning the appearance varia-
tions from the multiple video frames.

Growth parameters
(2 yrs – 5 yrs)

Original
age = 2 yrs

Transformed
age = 5 yrs

Original
age = 5 yrs

Growth parameters
(9 yrs – 12 yrs)

Original
age = 9 yrs

Transformed
age = 12 yrs

Original
age = 12 yrs

Growth parameters
(7 yrs – 16 yrs)

Original
age = 7 yrs

Transformed
age = 16 yrs

Original
age = 16 yrs

Figure 6. Some appearance prediction results derived using 
the craniofacial growth model.11 The first column shows 
original images of children, the second estimates their 
growth changes, the third tracks the algorithm-estimated 
aging of a child, and the fourth shows an image of the child 
at the transformed age.
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fication. The fusion schemes can range from simply selecting 
good frames—which researchers then use for recognition in 
a still-image-based recognition framework—to estimation of 
a face’s full 3D structure, which can then be used to general-
ize across illumination, pose, and other parameters.

The choice depends primarily on the system’s operational 
requirements. For example, in a surveillance setting, face 
resolution might be inadequate for reliable shape estimation. 
This choice also limits the system’s recognition capability.  
A simple frame-selection scheme cannot generalize appear-
ance across pose variations, thus requiring the test video to 
have some pose overlap with the gallery videos.

Modeling facial characteristics
Effectively modeling subject-specific facial character-

istics from video data can only be achieved if the changes 
in facial appearance during the video’s course are ap-
propriately attributed to different factors, such as pose 
changes and lighting and expression variations. Unlike 
still-image-based scenarios, these variations are inherent 
in a VFR setting and must be accounted for to reap the 
benefits of extra information provided by the video data.

In addition, given the nature of the input data, VFR is 
often addressed in conjunction with tracking problems, 
which is itself a challenge. More often than not, tracking 
accuracy depends on knowledge of a reliable appearance 
model, while the recognition result depends on the local-
ization accuracy of the face region’s input video.

Researchers have designed existing VFR systems using 
a simultaneous tracking and recognition approach, a 2D 
feature graph matching across the temporal axis, a 3D 
model-based approach, hidden Markov models, and proba-
bilistic appearance manifolds. Table 2 provides a brief 
summary of the existing methods.

FUTURE RESEARCH DIRECTIONS 
Although there is an impressive body of experimental 

literature on human perception of faces, several funda-
mental issues are still unresolved.

Configural information
First, we must determine precisely what configural in-

formation is important for recognition. Most studies have 
tended to gloss over this question by focusing on the dis-
tinction between configural and feature-based approaches 
to face recognition. It is clear that something about the 
face’s overall gestalt is important. We do not, however, 
know exactly how to capitalize on this general notion of 
face gestalt. Which facial measurements contribute to this 
encoding? 

Familiarity’s role
Second, we must establish how familiarity changes 

facial representations. Human face-recognition pro-
cesses can tolerate greater degradations in the images 
of people with whom we are familiar relative to those 
with whom we have only a casual acquaintance. This 
suggests that the internal facial representation under-
goes important changes with increasing familiarity 
and thus raises several questions. What is the nature of 
these changes? Does encoding progress from being more 
piecemeal to more holistic result in a better experience? 
How do these changes help provide greater robustness 
for transformations? 

Top-down expectations
Third, we must decide the role that top-down expecta-

tions on recognition will play. Recall that the response 
latency of a face’s selective neurons in the primate in-
ferotemporal cortex is just a little over 100 ms. Given 
conventional ideas of rate coding, this low latency sug-
gests that face processing might be largely feed-forward 
in nature. If so, how can prior expectations influence 
identity computation? Further, under what conditions 
can top-down influences usefully contribute to face 
recognition?

Answering these questions promises not only to shed 
light on the brain mechanisms of face recognition, but 
also to provide clues to the development of more effec-

Table 2. Video-based face-recognition system examples.

Algorithm Short description Experimental description 

Probabilistic recognition of human faces from 
videox

Simultaneous tracking and recognition using a 
dynamic state space model and sequential 
importance sampling (SIS)

Private: 12 subjects
NIST: 30 subjects
Mobo: 25 subjects

VFR using probabilistic appearance manifoldsy Face modeled using a low-dimensional appear-
ance manifold, approximated by piecewise 
linear subspaces, and special manifolds

Honda UCSD dataset: 20 subjects (52 videos)

VFR through tracking facial featuresz Tracks facial features defined on a grid with 
Gabor attributes using SIS algorithm,yy  
VFR using adaptive hidden Markov models

Li dataset: 19 subjects (2 sequences each)

VFR using adaptive hidden Markov modelsxx Statistics of training videos, and their temporal 
dynamics, learned by an HMM

Private: 12 subjects, Mobo8: 25 subjects

   x  Zhou, et al., CVIU 2003.   y  Lee et al., CVIU 2005, and Turaga et al., CVPR 2008.   z  Li et al., JOSA 2001.   xx  Liu and Chen, CVPR 2003.   yy  Li dataset: 19 subjects (2 sequences each)
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But solving for the pose of the subject’s head is dif-
ficult, especially when the image resolution is low and 
the calibration of both external and internal cameras is 
insufficiently precise to allow robust multiview fusion. 
This is true when the subjects are usually in the far field of 
cameras. In addition, many other problems—such as mul-
tiview tracking, appropriate representations for multiview 
face images, and multiview recognition of faces—need 
additional investigation. Whether the algorithms must be 
centralized or distributed presents another major issue. 

Face recognition in Web 2.0 
Within the past year, face-recognition modules have 

been added to many applications, including Facebook, 
Google’s Picasa, and iPhoto. These modules have been 
programmed to recognize faces in a person’s photo li-
brary or Facebook network. They also let users correct 
mislabeled faces. The feedback from users will lead to 
rapid identification of areas in which automatic face 
recognition fails, revealing that we need more research.

Many of the same issues in multiview camera networks 
apply to face recognition in Web 2.0. However, there are 
unique aspects to this application, such as deriving al-
gorithms that correctly label faces in overlapping social 
contact networks.

Face recognition across aging 
Existing age-estimation algorithms are effective for 

determining ages only within a few years. The synthe-
sis of aged faces for subjects age 2 through 18 is largely 
determined by shape variations, while for adults, shape 
and texture variations come into play, with texture varia-
tions dominating the shape variations. In recent work,11 

tive strategies and representations suitable for 
deployment in computer-vision-based systems.

Remote face recognition 
Most existing face-recognition algorithms 

and systems are effective when the face images 
are only tens of meters from the camera. Ex-
tending the distance at which face recognition 
systems can be effective is a new thrust for sur-
veillance applications. In the remote-acquisition 
scenario, the face images are often blurred, 
might not always have a sufficient number of 
pixels applied to the faces, and could have sig-
nificant pose and illumination variations, as 
well as occlusion.

In the remote scenario, acquiring face sig-
natures of sufficient quality to be fed into 
recognition engines is itself a challenge. This is 
especially true when the sensor and subjects are 
moving. In this case, the videos must be stabi-
lized to robustly track the moving face before it 
can be recognized.

Video-based face recognition 
Maritime security and other security applications re-

quire robust approaches that exploit video sequences. 
Video-based face recognition has received increasing at-
tention over the past nine years. In the early stages of 
development, VFR research had to cope with a lack of 
video data for evaluation. Under the NIST Multibiometrics 
Grand Challenge (MBGC) program (http://face.nist.gov/
mbgc), 4,489 video sequences have been made available 
for developing and benchmarking video-to-video match-
ing problems.

For this work to be even more effective, the following 
problems must be addressed: real-time tracking and pose 
normalization of moving faces, illumination normaliza-
tion, compensation for low-resolution face images via 
super-resolution techniques, and simultaneous tracking 
and recognition. Algorithms that can accommodate mul-
tiple gallery images or gallery and probe-video sequences 
must also be developed.

Face recognition in a camera network 
Multicamera networks are an increasingly common 

solution for wide-area surveillance problems. Having a 
camera network acquire multiple face images can help 
developers build more robust descriptions of faces. This 
also increases the chance of the person being in a favor-
able frontal or near-frontal pose. However, to use this 
multiview information, we must estimate the pose of the 
subject’s head. This could be done explicitly by computing 
the subject’s actual pose to a reasonable approximation, 
or implicitly, by using a view-selection algorithm.

S kin color and surface roughness may enable rapid classification of a 
person into an ethnic and age group by exploiting skin pigmentation, 

translucency characteristics, and patterns of surface bumps. These attributes 
help prune the set of candidate gallery matches to a probe.

Moles, freckles, and scars are local skin attributes that, if present and 
durable, give extremely powerful recognition cues because of the low like-
lihood that different people will have the exact same local attributes. Local 
skin irregularities have different levels of permanence. While markings 
such as moles and freckles are permanent, most scratches and red spots are 
transient. The challenge, however, is to cope with variations in skin appear-
ance that stem from factors such as rate of blood flow to the skin and 
illumination variations.

Skin roughness can be divided into local and global components. Fore-
head and crows’ feet wrinkles are examples of local surface roughness. Age 
or health factors may cause global roughness, which typically covers large 
areas of the face, such as pimples. Skin surface roughness is typically visible 
only in medium- and large-resolution images. It has the advantage of 
appearing relatively robust to adverse factors such as facial expression, illu-
mination, and head pose.

FACE RECOGNITION: DOES SKIN MATTER?



(a) Pressure distribution (b) Linear muscles

(c) Sheet muscles

(d) Sphincter muscles

Figure 7. Illustration of facial-muscle configuration along 
with the accompanying proposed pressure models. The 
texture variation model was designed specifically to 
characterize facial wrinkles in predesignated facial regions.
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cision rules for face recognition across aging remains an 
open problem.

Face and other biometrics 
To ensure robustness, face-recognition algorithms 

have often worked in conjunction with fingerprint, iris, 
gait, and voice-recognition systems. This has led to the 
creation of a new research area: multimodal or multibio-
metrics systems. A salient challenge in fusing biometrics 
algorithms or systems is to devise efficient and robust 
fusion methods.

This research area has benefited largely from the 
theory and design of multiple classifier systems. Although 
researchers have advanced several examples of face/fin-
gerprint, face/gait, face/voice, and face/iris fusion, the area 
of multimodal biometrics, in which the face is one of the 
biometric signatures, remains in its infancy.12 

C
ontinuing research into face recognition will 
provide scientists and engineers with many 
vital projects, in areas such as homeland 
security, human-computer interaction, and 
numerous consumer applications. The areas 

we are considering pursuing are recognition from uncon-
strained video sequences, incorporating familiarity into 
algorithms, modeling effects of aging, and developing 
biologically plausible models for human face recognition 
ability. 
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